Crack Opening Displacement as a Fracture Mechanics Parameter in Eddy Current NDE

Author(s):  
D. V. Nelson ◽  
B. A. Auld
1983 ◽  
pp. 269-293
Author(s):  
R. L. Tobler ◽  
H. I. McHenry

Abstract This chapter reviews the concepts of fracture mechanics and their application to materials evaluation and the design of cryogenic structures. Emphasis is placed on an explanation of technology, a review of fracture mechanics testing methods, and a discussion on the many factors contributing to the fracture behavior of materials at cryogenic temperatures. Three approaches of elastic-plastic fracture mechanics are covered, namely the crack opening displacement, the J-integral, and the R-curve methods. The chapter also discusses the influence of thermal and metallurgical effects on toughness at low temperatures.


Author(s):  
Hyun-Min Jang ◽  
Doo-Ho Cho ◽  
Jae-Boong Choi ◽  
Young-Jin Kim ◽  
Nam-Su Huh ◽  
...  

Based on detailed three-dimensional (3-D) finite element (FE) limit analyses, the plastic limit load solutions for pipes with slanted circumferential through-wall cracks (TWCs) subjected to axial tension, global bending and internal pressure are reported. The FE model and analysis procedure employed in the present numerical study were validated by comparing the present FE results with existing solutions for plastic limit loads of pipes with idealized TWCs. To quantify the effect of slanted crack on plastic limit load, the slant correction factors for calculating plastic limit loads of pipes with slanted TWCs from pipes with idealized TWCs were newly proposed via extensive 3-D FE calculations. These slant correction factors are presented in a tabulated form for practical ranges of geometry and each loading conditions. Moreover, the present FE plastic limit loads were also compared with the existing solutions of pipes with slanted TWCs. These FE plastic limit load solutions can be applied to estimate elastic-plastic fracture mechanics parameters and creep fracture mechanics parameters, such as elastic-plastic J–integral and crack opening displacement, creep C*-integral and creep crack opening displacement, based on the reference stress concept considering more realistic crack shape.


1966 ◽  
Vol 1 (2) ◽  
pp. 145-153 ◽  
Author(s):  
F. M. Burdekin ◽  
D. E. W. Stone

An introduction is given to the fracture mechanics approach employing the concept of crack opening displacement for application to situations in which linear elastic fracture mechanics is invalidated by yielding. The hypothesis of a critical crack opening displacement to fracture has been examined experimentally using mild steel specimens of vastly differing dimensions. Subsidiary experiments have been carried out to define the factors responsible for the apparent effect of absolute size on the results. A theoretical analysis simulates elastic-plastic conditions to give a relationship between applied stresses and strains, crack length, and crack opening displacement.


2005 ◽  
Vol 473-474 ◽  
pp. 189-194
Author(s):  
Zilia Csomós ◽  
János Lukács

E-glass fibre reinforced polyester matrix composite was investigated, which was made by pullwinding process. Round three point bending (RTPB) specimens were tested under quasi-static and mode I cyclic loading conditions. Load vs. displacement (F-f), load vs. crack opening displacement (F-v) and crack opening displacement range vs. number of cycles (ΔCOD-N) curves were registered and analysed. Interfacial cracks were caused the final longitudinal fracture of the specimens under quasi-static and cyclic loading conditions.


Author(s):  
Richard Olson ◽  
Paul Scott

The US NRC/EPRI xLPR (eXtremely Low Probability of Rupture) probabilistic pipe fracture analysis program uses deterministic modules as the foundation for the calculation of the probability of pipe leak or rupture as a consequence of active degradation mechanisms, vibration or seismic loading. The circumferential crack opening displacement module, CrCOD, estimates crack opening displacement (COD) at the inside pipe surface, at the mid-wall thickness location, and at the outside pipe surface using a combined tension/crack face pressure/bending GE/EPRI-like solution. Each module has an uncertainty beyond the uncertainty of the xLPR data inputs. This paper documents the uncertainty for CrCOD. Using 36 pipe fracture experiments, including: base metal, similar metal weld, and dissimilar metal weld experiments; bend only and pressure and bend loading; static and dynamic load histories; cracks that range from short to long, the uncertainty of the CrCOD methodology is characterized. Module uncertainty is presented in terms mean fit and standard deviation between prediction and experimental values.


Sign in / Sign up

Export Citation Format

Share Document