Plastic Limit Loads for Slanted Circumferential Through-Wall Cracked Pipes Based on Finite Element Limit Analysis

Author(s):  
Hyun-Min Jang ◽  
Doo-Ho Cho ◽  
Jae-Boong Choi ◽  
Young-Jin Kim ◽  
Nam-Su Huh ◽  
...  

Based on detailed three-dimensional (3-D) finite element (FE) limit analyses, the plastic limit load solutions for pipes with slanted circumferential through-wall cracks (TWCs) subjected to axial tension, global bending and internal pressure are reported. The FE model and analysis procedure employed in the present numerical study were validated by comparing the present FE results with existing solutions for plastic limit loads of pipes with idealized TWCs. To quantify the effect of slanted crack on plastic limit load, the slant correction factors for calculating plastic limit loads of pipes with slanted TWCs from pipes with idealized TWCs were newly proposed via extensive 3-D FE calculations. These slant correction factors are presented in a tabulated form for practical ranges of geometry and each loading conditions. Moreover, the present FE plastic limit loads were also compared with the existing solutions of pipes with slanted TWCs. These FE plastic limit load solutions can be applied to estimate elastic-plastic fracture mechanics parameters and creep fracture mechanics parameters, such as elastic-plastic J–integral and crack opening displacement, creep C*-integral and creep crack opening displacement, based on the reference stress concept considering more realistic crack shape.

2014 ◽  
Vol 136 (3) ◽  
Author(s):  
Doo-Ho Cho ◽  
Young-Hwan Choi ◽  
Nam-Su Huh ◽  
Do-Jun Shim ◽  
Jae-Boong Choi

The plastic limit load solutions for cylinder and plate with slanted through-wall cracks (TWCs) are developed based on the systematic three-dimensional (3D) finite element (FE) limit analyses. As for loading conditions, axial tension, global bending, and internal pressure are considered for a cylinder with slanted circumferential TWC, whereas, axial tension and internal pressure are considered for a plate and a cylinder with slanted axial TWC. Then, the verification of FE model and analysis procedure employed in the present numerical work was confirmed by employing the existing solutions for both cylinder and plate with idealized TWC. Also, the geometric variables of slanted TWC which can affect plastic limit loads were considered. Based on the systematic FE limit analysis results, the slant correction factors which represent the effect of slanted TWC on plastic limit load were provided as tabulated solutions. By adopting these slant correction factors, the plastic limit loads of slanted TWC can be directly estimated from existing solutions for idealized TWC. Furthermore, the modified engineering estimations of plastic limit loads for slanted TWC are proposed based on equilibrium equation and von Mises yield criterion. The present results can be applied either to diverse structural integrity assessments or for accurate estimation of fracture mechanics parameters such as J-integral, plastic crack opening displacement (COD) and C*-integral for slanted TWC based on the reference stress concept (Kim, et al., 2002, “Plastic Limit Pressure for Cracked Pipes Using Finite Element Limit Analyse,” Int. J. Pressure Vessels Piping, 79, pp. 321–330; Kim, et al., 2001, “Enhanced Reference Stress-Based J and Crack Opening Displacement Estimation Method for Leak-Before-Break Analysis and Comparison With GE/EPRI Method,” Fatigue Fract. Eng. Mater. Struct., 24, pp. 243–254; Kim, et al., 2002, “Non-Linear Fracture Mechanics Analyses of Part Circumferential Surface Cracked Pipes,” Int. J. Fract., 116, pp. 347–375.)


Author(s):  
Tae-Song Han ◽  
Nam-Su Huh ◽  
Do-Jun Shim

In order to assess a structural integrity of cracked components made of highly ductile material based on fully plastic fracture mechanics concept, an accurate plastic limit load of components of interest is crucial element. Such a plastic limit load can also be applied to estimate elastic-plastic J-integral based on the reference stress concept. In this context, during last several decades, many efforts have been made to suggest plastic limit load solutions of cracked cylinder. Recent works for evaluating rupture probabilities of nuclear piping indicate that the only use of idealized circumferential through-wall crack leads to very conservative results which in turn gives higher rupture probabilities of nuclear piping, thus the considerations of more realistic crack shape during crack growth due to primary water stress corrosion cracking (PWSCC) and fatigue and axial through-wall crack were recommended to come up with more realistic rupture probabilities of nuclear piping. Then, the needs of fracture mechanics parameters of non-idealized through-wall cracks both in axial and circumferential directions have been raised. In the present work, the plastic limit loads of thick-walled cylinder with non-idealized axial and circumferential through-wall cracks are proposed based on detailed 3-dimensional finite element analyses. The present results can be applied either to assess structural integrity of thick-walled nuclear piping with non-idealized through-wall cracks or to calculate elastic-plastic J-integral using the reference stress concept.


2005 ◽  
Vol 128 (1) ◽  
pp. 49-56 ◽  
Author(s):  
Z. F. Sang ◽  
H. F. Wang ◽  
L. P. Xue ◽  
G. E. O. Widera

The purpose of this work is to study the plastic limit load of pad reinforced cylindrical vessels with different d/D ratios under out-of-plane moment loading on a nozzle. Three full-scale test models were designed and fabricated. A 3-D nonlinear finite element numerical analysis was also performed. Data on plastic limit moment is obtained from load-displacement and load-strain responses. The results indicate that plastic limit loads determined by test (including displacement and strain measurements) and finite element analysis are in agreement.


Author(s):  
Shunjie Li ◽  
Changyu Zhou ◽  
Jian Li ◽  
Xinting Miao

The effect of bend angle on plastic limit loads of pipe bends (elbows) under in-plane opening and closing bending moment is presented using three-dimensional large strain nonlinear finite element analyses. The results show that the presence of ovality significantly leads to the stress concentration in the middle cross section, which is the critical section of pipe bends. Meanwhile the state of stress concentration is also associated with the loading modes including the in-plane opening bending moment and the closing bending moment. Then plastic limit loads of pipe bends are further studied. It is found that plastic limit loads are decreasing with the increase of bend angles. Especially the variation of plastic limit loads of small angle pipe bends (bend angle from the 0 degree to 90 degree) is larger than that of large angle pipe bends (bend angle greater than 90 degree). Based on the finite element results, the present plastic limit load solutions are not fit for the large angle pipe bends (bend angle greater than 90 degree).


Author(s):  
Andrew Cosham ◽  
Kenneth A. Macdonald

Controlled lateral buckling in offshore pipelines typically gives rise to the combination of internal over-pressure and high longitudinal strains (possibly exceeding 0.4 percent). Engineering critical assessments (ECAs) are commonly conducted during design to determine tolerable sizes for girth weld flaws. ECAs are primarily conducted in accordance with BS 7910, often supplemented by guidance given in DNV-OS-F101 and DNV-FP-F108. DNV-OS-F101 requires that finite element (FE) analysis is conducted when, in the presence of internal over-pressure, the nominal longitudinal strain exceeds 0.4 percent. It recommends a crack driving force assessment, rather than one based on the failure assessment diagram. FE analysis is complicated, time consuming and costly. ECAs are, necessarily, conducted towards the end of the design process, at which point the design loads have been defined, the welding procedures qualified and the material properties quantified. In this context, ECAs and FE are not an ideal combination for the pipeline operator, the designer or the installation contractor. A pipeline subject to internal over-pressure is in a state of bi-axial loading. The combination of internal over-pressure and longitudinal strain appears to become more complicated as the longitudinal strain increases, because of the effect of bi-axial loading on the stress-strain response. An analysis of a relatively simple case, a fully-circumferential, external crack in a cylinder subject to internal over-pressure and longitudinal strain, is presented in order to illustrate the issues with the assessment. Finite element analysis, with and without internal over-pressure, are used to determine the plastic limit load, the crack driving force, and the Option 3 failure assessment curve. The results of the assessment are then compared with an assessment using the Option 2 curve. It is shown that an assessment based Option 2, which does not require FE analysis, can potentially give comparable results to the more detailed assessments, when more accurate stress intensity factor and reference stress (plastic limit load) solutions are used. Finally, the results of the illustrative analysis are used to present an outline of suggested revisions to the guidance in DNV-OS-F101, to reduce the need for FE analysis.


2009 ◽  
Vol 417-418 ◽  
pp. 45-48
Author(s):  
Holger Theilig ◽  
Dirk Holländer ◽  
Michael Wünsche

In this paper a higher order crack path simulation algorithm for multiple interacting cracks is presented using piecewise parabolic curved increments including the consideration of the plastic limit loads. For this reason, the program PCCS-2D has been extended to analyse the crack growth and the plastic limit load for each crack propagation step in a fully automatic simulation. The proposed solution algorithm provides a powerful tool for flaw assessment with the FAD proce¬dure in combination with a numerical crack path simulation. Several numerical examples are pre¬sented to show the accuracy and the efficiency of the crack path simulation including the analysis of the plastic limit loads


2013 ◽  
Vol 18 (4) ◽  
pp. 1263-1274 ◽  
Author(s):  
V.N. Skopinsky ◽  
N.A. Berkov ◽  
A.B. Smetankin

Abstract A new method and numerical procedure for determining the plastic limit load in an ellipsoid-cylinder intersection using the elastic-plastic finite element analysis are presented. The proposed method is based on the maximum criterion of the rate of change of the relative plastic work. For the elastic-plastic analysis of the nozzle connections the 2D finite element method and plasticity theory with strain hardening are used. The results of the comparison of the plastic limit pressure obtained on the basis of different known criteria and the proposed criterion are presented. A parametric study of ellipsoidal heads with a nozzle under internal pressure loading was performed. The effects of nondimensional geometric parameters of shell intersection on the plastic limit pressure are discussed.


Sign in / Sign up

Export Citation Format

Share Document