High Risk Group of Hepatocellular Carcinoma in Japan: Risk Scores to Predict Hepatocellular Carcinoma Development in Liver Cirrhosis

1986 ◽  
pp. 133-138 ◽  
Author(s):  
Nobu Hattori ◽  
Kenichi Kobayashi
2021 ◽  
Vol 12 ◽  
Author(s):  
Junli Wang ◽  
Qi Zhang ◽  
Fukang Shi ◽  
Dipesh Kumar Yadav ◽  
Zhengtao Hong ◽  
...  

Purpose: Hepatocellular carcinoma (HCC) is one of the most prevalent malignant diseases worldwide and has a poor prognosis. Gene-based prognostic models have been reported to predict the overall survival of patients with HCC. Unfortunately, most of the genes used in earlier prognostic models lack prospective validation and, thus, cannot be used in clinical practice.Methods: Candidate genes were selected from GEPIA (Gene Expression Profiling Interactive Analysis), and their associations with patients’ survival were confirmed by RT-PCR using cDNA tissue microarrays established from patients with HCC after radical resection. A multivariate Cox proportion model was used to calculate the coefficient of corresponding gene. The expression of seven genes of interest (MKI67, AR, PLG, DNASE1L3, PTTG1, PPP1R1A, and TTR) with two reference genes was defined to calculate a risk score which determined groups of different risks.Results: Our risk scoring efficiently classified patients (n = 129) with HCC into a low-, intermediate-, and high-risk group. The three groups showed meaningful distinction of 3-year overall survival rate, i.e., 88.9, 74.5, and 20.6% for the low-, intermediate-, and high-risk group, respectively. The prognostic prediction model of risk scores was subsequently verified using an independent prospective cohort (n = 77) and showed high accuracy.Conclusion: Our seven-gene signature model performed excellent long-term prediction power and provided crucially guiding therapy for patients who are not a candidate for surgery.


Author(s):  
Hui Huang ◽  
Si-min Ruan ◽  
Meng-fei Xian ◽  
Ming-de Li ◽  
Mei-qing Cheng ◽  
...  

Objectives: This study aimed to construct a prediction model based on contrast-enhanced ultrasound (CEUS) ultrasomics features and investigate its efficacy in predicting early recurrence (ER) of primary hepatocellular carcinoma (HCC) after resection or ablation. Methods: This study retrospectively included 215 patients with primary HCC, who were divided into a developmental cohort (n = 139) and a test cohort (n = 76). Four representative images—grayscale ultrasound, arterial phase, portal venous phase and delayed phase —were extracted from each CEUS video. Ultrasomics features were extracted from tumoral and peritumoral area inside the region of interest. Logistic-regression was used to establish models, including a tumoral model, a peritumoral model and a combined model with additional clinical risk factors. The performance of the three models in predicting recurrence within 2 years was verified. Results: The combined model performed best in predicting recurrence within 2 years, with an area under the curve (AUC) of 0.845, while the tumoral model had an AUC of 0.810 and the peritumoral model one of 0.808. For prediction of recurrence-free survival, the 2 year cumulative recurrence rate was significant higher in the high-risk group (76.5%) than in the low-risk group (9.5%; p < 0.0001). Conclusion: These CEUS ultrasomics models, especially the combined model, had good efficacy in predicting early recurrence of HCC. The combined model has potential for individual survival assessment for HCC patients undergoing resection or ablation. Advances in knowledge: CEUS ultrasomics had high sensitivity, specificity and PPV in diagnosing early recurrence of HCC, and high efficacy in predicting early recurrence of HCC (AUC > 0.8). The combined model performed better than the tumoral ultrasomics model and peritumoral ultrasomics model in predicting recurrence within 2 years. Recurrence was more likely to occur in the high-risk group than in the low-risk group, with 2-year cumulative recurrence rates respectively 76.5% and 9.5% (p < 0.0001).


2021 ◽  
Author(s):  
Wei Song ◽  
Weiting Kang ◽  
Qi Zhang

Abstract Objective: This study aimed to construct a ferroptosis-related gene signature to predict clinical prognosis and tumor immunity in patients with kidney renal clear cell carcinoma (KIRC).Methods: The mRNA expression profiles and corresponding clinical data of KIRC patients were downloaded from The Cancer Genome Atlas (TCGA), which were randomly divided into training (398 patients) and validation set (132 patients). The iron death related (IDR) prediction model was constructed based on training set and 60 ferroptosis-related genes from previous literatures, followed by prognostic performance evaluation and verification using the validation set. Moreover, functional enrichment, immune cell infiltration, metagene clusters correlation, and TIDE scoring analyses were performed. Results: In total, 23 ferroptosis-related genes were significantly associated with overall survival (OS). The IDR prediction model (a 10-gene signature) was then constructed to stratify patients into two risk groups. The OS of KIRC patients with high-risk scores was significantly shorter than those with low-risk scores. Moreover, the risk score was confirmed as an independent prognostic predictor for OS. The positive and negative correlated genes with this model were significantly enriched in p53 signaling pathway, and cGMP-PKG signaling pathway. The patients in the high-risk group had higher ratios of plasma cells, T cells CD8, and T cells regulatory Tregs. Furthermore, IgG, HCK, LCK, and Interferson metagenes were significantly correlated with risk score. By TIDE score analysis, patients in the high-risk group could benefit from immunotherapy.Conclusions: The identified ferroptosis-related gene signature is significantly correlated with clinical prognosis and immune immunity in KIRC patients.


2017 ◽  
Vol 2017 ◽  
pp. 1-7
Author(s):  
Lingling He ◽  
Shuan Zhang ◽  
Xiaoli Liu ◽  
Yuyong Jiang ◽  
Xianbo Wang ◽  
...  

Aim. To establish a new score model to predict risk of death in patients with hepatocellular carcinoma and type 2 diabetes mellitus.Methods. This was a retrospective study of 147 patients with hepatocellular carcinoma and type 2 diabetes mellitus who came to Beijing Ditan Hospital between October 2008 and June 2013. Univariate and multivariate logistic regression analysis was performed to obtain the independent factors associated with death risk. A new score model was devised according to these factors.Results. A prediction score model composed of HbA1c, NLR, age, and CTP class was devised, which ranged from 0 to 7. AUROC of the score was 0.853 (P<0.001, 95% CI: 0.791–0.915). Scores 0–2, 3-4, and 5–7 identified patients as low-, medium-, and high-risk categories. The cumulative survival rate was 93.6%, 83.0%, and 74.5% in the low-risk group in 1, 2, and 3 years, while it was 64.0%, 46.0%, and 26.0% in the medium-risk group, whereas it was 24.0%, 12.0%, and 6.0% in the high-risk group, respectively. The cumulative survival rate was significantly higher in the low-risk group than that in the medium-risk group and high-risk group (P<0.001).Conclusion. The HbA1c-based score model can be used to predict death risk in patients with hepatocellular carcinoma and type 2 diabetes mellitus.


2020 ◽  
Author(s):  
Qinqin Liu ◽  
Jing Li ◽  
Fei Liu ◽  
Weilin Yang ◽  
Jingjing Ding ◽  
...  

Abstract Background Hepatocellular carcinoma (HCC) is associated with dismal prognosis, and prediction of the prognosis of HCC can assist the therapeutic decisions. More and more studies showed that the texture parameters of images can reflect the heterogeneity of the tumor, and may have the potential to predict the prognosis of patients with HCC after surgical resection. The aim of the study was to investigate the prognostic value of computed tomography (CT) texture parameters for patients with HCC after hepatectomy, and try to develop a radiomics nomograms by combining clinicopathological factors with radiomics signature.Methods 544 eligible patients were enrolled in the retrospective study and randomly divided into training cohort (n=381) and validation cohort (n=163). The regions of interest (ROIs) of tumor is delineated, then the corresponding texture parameters are extracted. The texture parameters were selected by using the least absolute shrinkage and selection operator (LASSO) Cox model in training cohort, and the radiomics score (Rad-score) was generated. According to the cut-off value of the Rad-score calculated by the receiver operating characteristic (ROC) curve, the patients were divided into high-risk group and low-risk group. The prognosis of the two groups was compared and validated in the validation cohort. Univariate and multivariable analyses by COX proportional hazard regression model were used to select the prognostic factors of overall survival (OS). The radiomics nomogram for OS were established based on the radiomics signature and clinicopathological factors. The Concordance index (C-index), calibration plot and decision curve analysis (DCA) were used to evaluate the performance of the radiomics nomogram.Result 7 texture parameters associated with OS were selected in the training, and the radiomics signature was formulated based on the texture parameters. The patients were divided into high-risk group and low-risk group by the cut-off values of the Rad-score of OS. The 1-, 3- and 5-year OS rate was 71.0%, 45.5% and 35.5% in the high-risk group, respectively, and 91.7%, 82.1% and 78.7%, in the low-risk group, respectively, with significant difference (P <0.001). COX regression model found that Rad-score was an independent prognostic factor of OS. In addition, the radiomics nomogram was developed based on five variables: α‐fetoprotein (AFP), platelet lymphocyte ratio (PLR), largest tumor size, microvascular invasion (MVI) and Rad-score. The nomograms displayed good accuracy in predicting OS (C-index=0.747) in the training cohort and was confirmed in the validation cohort (C-index=0.777). The calibration plots also showed an excellent agreement between the actual and predicted survival probabilities. The DAC indicated that the radiomics nomogram showed better clinical usefulness than the clinicopathologic nomogram.Conclusion The radiomics signature is potential biomarkers of the prognosis of HCC after hepatectomy. Radiomics nomogram that integrated radiomics signature can provide more accurate estimate of OS for patients with HCC after hepatectomy.


2021 ◽  
Vol 12 ◽  
Author(s):  
Susu Zheng ◽  
Xiaoying Xie ◽  
Xinkun Guo ◽  
Yanfang Wu ◽  
Guobin Chen ◽  
...  

Pyroptosis is a novel kind of cellular necrosis and shown to be involved in cancer progression. However, the diverse expression, prognosis and associations with immune status of pyroptosis-related genes in Hepatocellular carcinoma (HCC) have yet to be analyzed. Herein, the expression profiles and corresponding clinical characteristics of HCC samples were collected from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Then a pyroptosis-related gene signature was built by applying the least absolute shrinkage and selection operator (LASSO) Cox regression model from the TCGA cohort, while the GEO datasets were applied for verification. Twenty-four pyroptosis-related genes were found to be differentially expressed between HCC and normal samples. A five pyroptosis-related gene signature (GSDME, CASP8, SCAF11, NOD2, CASP6) was constructed according to LASSO Cox regression model. Patients in the low-risk group had better survival rates than those in the high-risk group. The risk score was proved to be an independent prognostic factor for overall survival (OS). The risk score correlated with immune infiltrations and immunotherapy responses. GSEA indicated that endocytosis, ubiquitin mediated proteolysis and regulation of autophagy were enriched in the high-risk group, while drug metabolism cytochrome P450 and tryptophan metabolism were enriched in the low-risk group. In conclusion, our pyroptosis-related gene signature can be used for survival prediction and may also predict the response of immunotherapy.


2020 ◽  
Author(s):  
Li Liu ◽  
She Tian ◽  
Zhu Li ◽  
Yongjun Gong ◽  
Hao Zhang

Abstract Background : Hepatocellular carcinoma (HCC) is one of the most common clinical malignant tumors, resulting in high mortality and poor prognosis. Studies have found that LncRNA plays an important role in the onset, metastasis and recurrence of hepatocellular carcinoma. The immune system plays a vital role in the development, progression, metastasis and recurrence of cancer. Therefore, immune-related lncRNA can be used as a novel biomarker to predict the prognosis of hepatocellular carcinoma. Methods : The transcriptome data and clinical data of HCC patients were obtained by using The Cancer Genome Atlas-Liver Hepatocellular Carcinoma (TCGA‑LIHC), and immune-related genes were extracted from the Molecular Signatures Database (IMMUNE RESPONSE M19817 and IMMUNE SYSTEM PROCESS M13664). By constructing the co-expression network and Cox regression analysis, 13 immune-lncRNAs was identified to predict the prognosis of HCC patients. Patients were divided into high risk group and low risk group by using the risk score formula, and the difference in overall survival (OS) between the two groups was reflected by Kaplan-Meier survival curve. The time - dependent receiver operating characteristics (ROC) analysis and principal component analysis (PCA) were used to evaluate 13 immune -lncRNAs signature. Results : Through TCGA - LIHC extracted from 343 cases of patients with hepatocellular carcinoma RNA - Seq data and clinical data, 331 immune-related genes were extracted from the Molecular Signatures Database , co-expression networks and Cox regression analysis were constructed, 13 immune-lncRNAs signature was identified as biomarkers to predict the prognosis of patients. At the same time using the risk score median divided the patients into high risk and low risk groups, and through the Kaplan-Meier survival curve analysis found that high-risk group of patients' overall survival (OS) less low risk group of patients. The AUC value of the ROC curve is 0.828, and principal component analysis (PCA) results showed that patients could be clearly divided into two parts by immune-lncRNAs, which provided evidence for the use of 13 immune-lncRNAs signature as prognostic markers. Conclusion : Our study identified 13 immune-lncRNAs signature that can effectively predict the prognosis of HCC patients, which may be a new prognostic indicator for predicting clinical outcomes.


Sign in / Sign up

Export Citation Format

Share Document