Modelling the β-Cell Electrical Activity

Author(s):  
J. A. Bangham ◽  
P. A. Smith ◽  
P. C. Croghan
Keyword(s):  
Endocrinology ◽  
2004 ◽  
Vol 145 (2) ◽  
pp. 667-678 ◽  
Author(s):  
Arnaud Merglen ◽  
Sten Theander ◽  
Blanca Rubi ◽  
Gaelle Chaffard ◽  
Claes B. Wollheim ◽  
...  

Abstract Rat insulinoma-derived INS-1 cells constitute a widely used β-cell surrogate. However, due to their nonclonal nature, INS-1 cells are heterogeneous and are not stable over extended culture periods. We have isolated clonal INS-1E cells from parental INS-1 based on both their insulin content and their secretory responses to glucose. Here we describe the stable differentiated INS-1E β-cell phenotype over 116 passages (no. 27–142) representing a 2.2-yr continuous follow-up. INS-1E cells can be safely cultured and used within passages 40–100 with average insulin contents of 2.30 ± 0.11 μg/million cells. Glucose-induced insulin secretion was dose-related and similar to rat islet responses. Secretion saturated with a 6.2-fold increase at 15 mm glucose, showing a 50% effective concentration of 10.4 mm. Secretory responses to amino acids and sulfonylurea were similar to those of islets. Moreover, INS-1E cells retained the amplifying pathway, as judged by glucose-evoked augmentation of insulin release in a depolarized state. Regarding metabolic parameters, INS-1E cells exhibited glucose dose-dependent elevations of NAD(P)H, cytosolic Ca2+, and mitochondrial Ca2+ levels. In contrast, mitochondrial membrane potential, ATP levels, and cell membrane potential were all fully activated by 7.5 mm glucose. Using the perforated patch clamp technique, 7.5 and 15 mm glucose elicited electrical activity to a similar degree. A KATP current was identified in whole cell voltage clamp using diazoxide and tolbutamide. As in native β-cells, tolbutamide induced electrical activity, indicating that the KATPconductance is important in setting the resting potential. Therefore, INS-1E cells represent a stable and valuable β-cell model.


Endocrinology ◽  
1998 ◽  
Vol 139 (3) ◽  
pp. 993-998 ◽  
Author(s):  
Jean-Claude Henquin

Glucose stimulation of pancreatic β-cells triggers electrical activity (slow waves of membrane potential with superimposed spikes) that is best monitored with intracellular microelectrodes. Closure of ATP-sensitive K+ channels underlies the depolarization to the threshold potential and participates in the increase in electrical activity produced by suprathreshold (>7 mm) concentrations of glucose, but it is still unclear whether this is the sole mechanism of control. This was investigated by testing whether blockade of ATP-sensitive K+ channels by low concentrations of tolbutamide is able to mimic the effects of glucose on mouse β-cell electrical activity even in the absence of the sugar. The response to tolbutamide was influenced by the duration of the perifusion with the low glucose medium. Tolbutamide (25 μm) caused a rapid and sustained depolarization with continuous activity after 6 min of perifusion of the islet with 3 mm glucose, and a progressive depolarization with slow waves of the membrane potential after 20 min. In the absence of glucose, the β-cell response to tolbutamide was a transient phase of depolarization with rare slow waves (6 min) or a silent, small, but sustained, depolarization (20 min). Readministration of 3 mm glucose was sufficient to restore slow waves, whereas an increase in the glucose concentration to 5 and 7 mm was followed by a lengthening of the slow waves and a shortening of the intervals. In contrast, induction of slow waves by tolbutamide proved very difficult in the absence of glucose, because the β-cell membrane tended to depolarize from a silent level to the plateau level, at which electrical activity is continuous. Azide, a mitochondrial poison, abrogated the electrical activity induced by tolbutamide in the absence of glucose, which demonstrates the influence of the metabolism of endogenous fuels on the response to the sulfonylurea. The partial repolarization that azide also produced was reversed by increasing the concentration of tolbutamide, but reappearance of the spikes required the addition of glucose. It is concluded that inhibition of ATP-sensitive K+ channels is not the only mechanism by which glucose controls electrical activity inβ -cells.


2020 ◽  
Author(s):  
Jose G. Miranda ◽  
Wolfgang E Schleicher ◽  
David G. Ramirez ◽  
Samantha P Landgrave ◽  
Richard KP Benninger

AbstractDiabetes results from insufficient insulin secretion as a result of dysfunction to β-cells within the islet of Langerhans. Elevated glucose causes β-cell membrane depolarization and action potential generation, voltage gated Ca2+ channel activation and oscillations in free-Ca2+ activity ([Ca2+]), triggering insulin release. Nuclear Factor of Activated T-cell (NFAT) is a transcription factor that is regulated by increases in [Ca2+] and calceineurin (CaN) activation. NFAT regulation links cell activity with gene transcription in many systems, and within the β-cell regulates proliferation and insulin granule biogenesis. However the link between the regulation of β-cell electrical activity and oscillatory [Ca2+], with NFAT activation and downstream transcription is poorly understood. In this study we tested whether dynamic changes to β-cell electrical activity and [Ca2+] regulates NFAT activation and downstream transcription. In cell lines, mouse islets and human islets, including those from donors with type2 diabetes, we applied both agonists/antagonists of ion channels together with optogenetics to modulate β-cell electrical activity. Both glucose-induced membrane depolarization and optogenetic-stimulation triggered NFAT activation, and increased transcription of NFAT targets and intermediate early genes (IEGs). Importantly only conditions in which slow sustained [Ca2+] oscillations were generated led to NFAT activation and downstream transcription. In contrast in human islets from donors with type2 diabetes NFAT activation by glucose was diminished, but rescued upon pharmacological stimulation of electrical activity. Thus, we gain insight into the specific patterns of electrical activity that regulate NFAT activation and gene transcription and how this is disrupted in diabetes.


1998 ◽  
Vol 274 (4) ◽  
pp. C1174-C1184 ◽  
Author(s):  
Gerhard Magnus ◽  
Joel Keizer

In the preceding article [ Am. J. Physiol. 274 ( Cell Physiol. 43): C1158–C1173, 1998], we describe the development of a kinetic model for the interaction of mitochondrial Ca2+ handling and electrical activity in the pancreatic β-cell. Here we describe further results of those simulations, focusing on mitochondrial variables, the rate of respiration, and fluxes of metabolic intermediates as a function of d-glucose concentration. Our simulations predict relatively smooth increases of O2consumption, adenine nucleotide transport, oxidative phosphorylation, and ATP production by the tricarboxylic acid cycle asd-glucose concentrations are increased from basal to 20 mM. On the other hand, we find that the active fraction of pyruvate dehydrogenase saturates, due to increases in matrix Ca2+, near the onset of bursting electrical activity and that the NADH/NAD+ ratio in the mitochondria increases by roughly an order of magnitude as glucose concentrations are increased. The mitochondrial ATP/ADP ratio increases by factor of <2 between thed-glucose threshold for bursting and continuous spiking. According to our simulations, relatively small changes in mitochondrial membrane potential (∼1 mV) caused by uptake of Ca2+ are sufficient to alter the cytoplasmic ATP/ADP ratio and influence ATP-sensitive K+ channels in the plasma membrane. In the simulations, these cyclic changes in the mitochondrial membrane potential are due to synchronization of futile cycle of Ca2+ from the cytoplasm through mitochondria via Ca2+ uniporters and Na+/Ca2+exchange. Our simulations predict steady mitochondrial Ca2+concentrations on the order of 0.1 μM at low glucose concentrations that become oscillatory with an amplitude on the order of 0.5 μM during bursting. Abrupt increases in mitochondrial Ca2+concentration >5 μM may occur during continuous electrical activity.


2019 ◽  
Vol 47 (6) ◽  
pp. 1843-1855 ◽  
Author(s):  
Mauricio Di Fulvio ◽  
Lydia Aguilar-Bryan

It is accepted that insulin-secreting β-cells release insulin in response to glucose even in the absence of functional ATP-sensitive K+ (KATP)-channels, which play a central role in a ‘consensus model’ of secretion broadly accepted and widely reproduced in textbooks. A major shortcoming of this consensus model is that it ignores any and all anionic mechanisms, known for more than 40 years, to modulate β-cell electrical activity and therefore insulin secretion. It is now clear that, in addition to metabolically regulated KATP-channels, β-cells are equipped with volume-regulated anion (Cl–) channels (VRAC) responsive to glucose concentrations in the range known to promote electrical activity and insulin secretion. In this context, the electrogenic efflux of Cl– through VRAC and other Cl– channels known to be expressed in β-cells results in depolarization because of an outwardly directed Cl– gradient established, maintained and regulated by the balance between Cl– transporters and channels. This review will provide a succinct historical perspective on the development of a complex hypothesis: Cl– transporters and channels modulate insulin secretion in response to nutrients.


1999 ◽  
Vol 114 (6) ◽  
pp. 759-770 ◽  
Author(s):  
Sven O. Göpel ◽  
Takahiro Kanno ◽  
Sebastian Barg ◽  
Lena Eliasson ◽  
Juris Galvanovskis ◽  
...  

We have applied the perforated patch whole-cell technique to β cells within intact pancreatic islets to identify the current underlying the glucose-induced rhythmic firing of action potentials. Trains of depolarizations (to simulate glucose-induced electrical activity) resulted in the gradual (time constant: 2.3 s) development of a small (&lt;0.8 nS) K+ conductance. The current was dependent on Ca2+ influx but unaffected by apamin and charybdotoxin, two blockers of Ca2+-activated K+ channels, and was insensitive to tolbutamide (a blocker of ATP-regulated K+ channels) but partially (&gt;60%) blocked by high (10–20 mM) concentrations of tetraethylammonium. Upon cessation of electrical stimulation, the current deactivated exponentially with a time constant of 6.5 s. This is similar to the interval between two successive bursts of action potentials. We propose that this Ca2+-activated K+ current plays an important role in the generation of oscillatory electrical activity in the β cell.


Islets ◽  
2014 ◽  
Vol 6 (3) ◽  
pp. e949195 ◽  
Author(s):  
Gerardo J Félix-Martínez ◽  
J Rafael Godínez-Fernández

2018 ◽  
Vol 98 (1) ◽  
pp. 117-214 ◽  
Author(s):  
Patrik Rorsman ◽  
Frances M. Ashcroft

The pancreatic β-cell plays a key role in glucose homeostasis by secreting insulin, the only hormone capable of lowering the blood glucose concentration. Impaired insulin secretion results in the chronic hyperglycemia that characterizes type 2 diabetes (T2DM), which currently afflicts >450 million people worldwide. The healthy β-cell acts as a glucose sensor matching its output to the circulating glucose concentration. It does so via metabolically induced changes in electrical activity, which culminate in an increase in the cytoplasmic Ca2+ concentration and initiation of Ca2+-dependent exocytosis of insulin-containing secretory granules. Here, we review recent advances in our understanding of the β-cell transcriptome, electrical activity, and insulin exocytosis. We highlight salient differences between mouse and human β-cells, provide models of how the different ion channels contribute to their electrical activity and insulin secretion, and conclude by discussing how these processes become perturbed in T2DM.


Sign in / Sign up

Export Citation Format

Share Document