The Ultrastructural Chemoanatomy of the Basal Ganglia: 1984–1989. II. The Pallidum, Substantia Nigra and Subthalamic Nucleus

Author(s):  
Pedro Pasik ◽  
Tauba Pasik ◽  
Gay R. Holstein
Author(s):  
Charles J. Wilson

The subthalamo-pallidal system constitutes the second layer of circuitry in the basal ganglia, downstream of the striatum. It consists of four nuclei. Two of them, the external segment of the globus pallidus (GPe) and subthalamic nucleus (STN), make their connections primarily within the basal ganglia. The others, the internal segment of the globus pallidus (GPi) and the substantia nigra pars reticulata (SNr), are the output nuclei of the basal ganglia. Collectively, their axons distribute collaterals to all the targets of the basal ganglia. Rare interneurons have been reported in each of them from studies of Golgi-stained preparations, but they have not so far been confirmed using more modern methods. The circuit as described here is based primarily on studies of the axonal arborizations of neurons stained individually by intracellular or juxtacellular labeling.


Brain ◽  
2021 ◽  
Author(s):  
Anastasia Brodovskaya ◽  
Shinnosuke Shiono ◽  
Jaideep Kapur

Abstract There are no detailed descriptions of neuronal circuit active during frontal lobe motor seizures. Using activity reporter mice, local field potential recordings, tissue clearing, viral tracing, and super-resolution microscopy, we found neuronal activation after focal motor to bilateral tonic-clonic seizures in the striatum, globus pallidus externus, subthalamic nucleus, substantia nigra pars reticulata and neurons of the indirect pathway. Seizures preferentially activated dopamine D2 receptor-expressing neurons over D1 in the striatum, which have different projections. Furthermore, the D2 receptor agonist infused into the striatum exerted an anticonvulsant effect. Seizures activate structures via short and long latency loops, and anatomical connections of the seizure focus determine the seizure circuit. These studies, for the first time, show activation of neurons in the striatum, globus pallidus, subthalamic nucleus, and substantia nigra during frontal lobe motor seizures on the cellular level, revealing a complex neuronal activation circuit subject to modulation by the basal ganglia.


2001 ◽  
Vol 95 (6) ◽  
pp. 990-997 ◽  
Author(s):  
Antonio A. F. De Salles ◽  
William P. Melega ◽  
Goran Laćan ◽  
Lisa J. Steele ◽  
Timothy D. Solberg

Object. Radiosurgery for functional neurosurgery performed using a linear accelerator (LINAC) has not been extensively characterized in preclinical studies. In the present study, the properties of a newly designed 3-mm-diameter collimator were evaluated in a dedicated LINAC, which produced lesions in the basal ganglia of vervet monkeys. Lesion formation was determined in vivo in three animals by examining magnetic resonance (MR) images to show the dosedelivery precision of targeting and the geometry and extent of the lesions. Postmortem immunohistochemical studies were conducted to determine the extent of lesion-induced radiobiological effects. Methods. In three male vervet monkeys, the subthalamic nucleus (STN; one animal) and the pars compacta of the lateral substantia nigra (SN; two animals) were targeted by a Novalis Shaped Beam Surgery System that included a 3-mm collimator and delivered a maximum dose of 150 Gy. Magnetic resonance images obtained 4, 5, and 9 months posttreatment were reviewed, and the animals were killed so that immunohistological characterizations could be made. Conclusions. The generation of precise radiosurgical lesions by a 3-mm collimator was validated in studies that targeted the basal ganglia of the vervet monkey. The extent of the lesions created in all animals remained restricted in diameter (< 3 mm) throughout the duration of the studies, as assessed by reviewing MR images. Histological studies showed that the lesions were contained within the STN and SN target areas and that there were persistent increases in glial fibrillary acidic protein immunoreactivity. Increases in immunoreactivity for tyrosine hydroxylase, the serotonin transporter, and the GluR1 subunit of the α-amino-3-hydroxy-5-methyl-4-isoxazole propionate glutamate receptor in penumbral regions of the lesion were suggestive of compensatory neuronal adaptations. This radiosurgical approach may be of particular interest for the induction of lesions of the STN and SN in studies of experimental parkinsonism, as well as for the development of potential radiosurgical treatments for Parkinson disease.


2021 ◽  
pp. 141-146
Author(s):  
Farwa Ali ◽  
Eduardo E. Benarroch

The basal ganglia are a group of nuclei that are involved in motor, cognitive, and behavioral circuits and are especially important in motor program selection and motor learning. The key components of the basal ganglia and their circuitry include the striatum (putamen, caudate nucleus, and nucleus accumbens), globus pallidus (GP), subthalamic nucleus (STN), substantia nigra, pedunculopontine nucleus (PPN), and parts of the thalamus and cortex. The basal ganglia have parallel motor, oculomotor, associative, and limbic circuits. This chapter reviews the anatomy and circuitry of the basal ganglia.


1997 ◽  
Vol 77 (3) ◽  
pp. 1635-1638 ◽  
Author(s):  
M. Clara Sañudo-Peña ◽  
J. Michael Walker

Sañudo-Peña, M. Clara and J. Michael Walker. Role of the subthalamic nucleus in cannabinoid actions in the substantia nigra of the rat. J. Neurophysiol. 77: 1635–1638, 1997. The effect of cannabinoids on the excitatory input to the substantia nigra reticulata (SNr) from the subthalamic nucleus was explored. For this purpose a knife cut was performed rostral to the subthalamic nucleus to isolate the subthalamic nucleus and the SNr from the striatum, a major source of cannabinoid receptors to the SNr. The data showed that the cannabinoid agonist WIN55,212-2 blocked the increase in the firing rate of SNr neurons induced by stimulation of the subthalamic nucleus with bicuculline. Furthermore, the cannabinoid antagonist SR141716A antagonized the effect of the cannabinoid agonist. This study showed that cannabinoids regulate not only the striatonigral pathway, as previously reported, but also the subthalamonigral pathway. The opposite influences of these two inputs to the SNr, inhibitory and excitatory respectively, suggest that endogenous cannabinoids play a major role in the physiological regulation of the SNr.


2008 ◽  
Vol 100 (5) ◽  
pp. 2515-2524 ◽  
Author(s):  
F. Steigerwald ◽  
M. Pötter ◽  
J. Herzog ◽  
M. Pinsker ◽  
F. Kopper ◽  
...  

We recorded resting-state neuronal activity from the human subthalamic nucleus (STN) during functional stereotactic surgeries. By inserting up to five parallel microelectrodes for single- or multiunit recordings and applying statistical spike-sorting methods, we were able to isolate a total of 351 single units in 65 patients with Parkinson's disease (PD) and 33 single units in 9 patients suffering from essential tremor (ET). Among these were 93 pairs of simultaneously recorded neurons in PD and 17 in ET, which were detected either by the same ( n = 30) or neighboring microelectrodes ( n = 80). Essential tremor is a movement disorder without any known basal ganglia pathology and with normal dopaminergic brain function. By comparing the neuronal activity of the STN in patients suffering from PD and ET we intended to characterize, for the first time, changes of basal ganglia activity in the human disease state that had previously been described in animal models of Parkinson's disease. We found a significant increase in the mean firing rate of STN neurons in PD and a relatively larger fraction of neurons exhibiting burstlike activity compared with ET. The overall proportion of neurons exhibiting intrinsic oscillations or interneuronal synchronization as defined by significant spectral peaks in the auto- or cross-correlations functions did not differ between PD and ET when considering the entire frequency range of 1–100 Hz. The distribution of significant oscillations across the theta (1–8 Hz), alpha (8–12 Hz), beta (12–35 Hz), and gamma band (>35 Hz), however, was uneven in ET and PD, as indicated by a trend in Fisher's exact test ( P = 0.05). Oscillations and pairwise synchronizations within the 12- to 35-Hz band were a unique feature of PD. Our results confirm the predictions of the rate model of Parkinson's disease. In addition, they emphasize abnormalities in the patterning and dynamics of neuronal discharges in the parkinsonian STN, which support current concepts of abnormal motor loop oscillations in Parkinson's disease.


2020 ◽  
Author(s):  
Krishnakanth Kondabolu ◽  
Natalie M. Doig ◽  
Olaoluwa Ayeko ◽  
Bakhtawer Khan ◽  
Alexandra Torres ◽  
...  

AbstractThe striatum and subthalamic nucleus (STN) are considered to be the primary input nuclei of the basal ganglia. Projection neurons of both striatum and STN can extensively interact with other basal ganglia nuclei, and there is growing anatomical evidence of direct axonal connections from the STN to striatum. There remains, however, a pressing need to elucidate the organization and impact of these subthalamostriatal projections in the context of the diverse cell types constituting the striatum. To address this, we carried out monosynaptic retrograde tracing from genetically-defined populations of dorsal striatal neurons in adult male and female mice, quantifying the connectivity from STN neurons to spiny projection neurons, GABAergic interneurons, and cholinergic interneurons. In parallel, we used a combination of ex vivo electrophysiology and optogenetics to characterize the responses of a complementary range of dorsal striatal neuron types to activation of STN axons. Our tracing studies showed that the connectivity from STN neurons to striatal parvalbumin-expressing interneurons is significantly higher (~ four-to eight-fold) than that from STN to any of the four other striatal cell types examined. In agreement, our recording experiments showed that parvalbumin-expressing interneurons, but not the other cell types tested, commonly exhibited robust monosynaptic excitatory responses to subthalamostriatal inputs. Taken together, our data collectively demonstrate that the subthalamostriatal projection is highly selective for target cell type. We conclude that glutamatergic STN neurons are positioned to directly and powerfully influence striatal activity dynamics by virtue of their enriched innervation of GABAergic parvalbumin-expressing interneurons.


Sign in / Sign up

Export Citation Format

Share Document