Tissue Oxygenation of the Skeletal Muscle and of the Heart During Hemodynamic Alterations in Rats

Author(s):  
Martina Günderoth-Palmowski
2003 ◽  
Vol 285 (3) ◽  
pp. H955-H963 ◽  
Author(s):  
Arthur Lo ◽  
Andrew J. Fuglevand ◽  
Timothy W. Secomb

The number of perfused capillaries in skeletal muscle varies with muscle activation. With increasing activation, muscle fibers are recruited as motor units consisting of widely dispersed fibers, whereas capillaries are recruited as groups called microvascular units (MVUs) that supply several adjacent fibers. In this study, a theoretical model was used to examine the consequences of this spatial mismatch between the functional units of muscle activation and capillary perfusion. Diffusive oxygen transport was simulated in cross sections of skeletal muscle, including several MVUs and fibers from several motor units. Four alternative hypothetical mechanisms controlling capillary perfusion were considered. First, all capillaries adjacent to active fibers are perfused. Second, all MVUs containing capillaries adjacent to active fibers are perfused. Third, each MVU is perfused whenever oxygen levels at its feed arteriole fall below a threshold value. Fourth, each MVU is perfused whenever the average oxygen level at its capillaries falls below a threshold value. For each mechanism, the dependence of the fraction of perfused capillaries on the level of muscle activation was predicted. Comparison of the results led to the following conclusions. Control of perfusion by MVUs increases the fraction of perfused capillaries relative to control by individual capillaries. Control by arteriolar oxygen sensing leads to poor control of tissue oxygenation at high levels of muscle activation. Control of MVU perfusion by capillary oxygen sensing permits adequate tissue oxygenation over the full range of activation without resulting in perfusion of all MVUs containing capillaries adjacent to active fibers.


1999 ◽  
Vol 86 (3) ◽  
pp. 860-866 ◽  
Author(s):  
Jörg Hutter ◽  
Oliver Habler ◽  
Martin Kleen ◽  
Matthias Tiede ◽  
Armin Podtschaske ◽  
...  

Acute normovolemic hemodilution (ANH) is efficient in reducing allogenic blood transfusion needs during elective surgery. Tissue oxygenation is maintained by increased cardiac output and oxygen extraction and, presumably, a more homogeneous tissue perfusion. The aim of this study was to investigate blood flow distribution and oxygenation of skeletal muscle. ANH from hematocrit of 36 ± 3 to 20 ± 1% was performed in 22 splenectomized, anesthetized beagles (17 analyzed) ventilated with room air. Normovolemia was confirmed by measurement of blood volume. Distribution of perfusion within skeletal muscle was determined by using radioactive microspheres. Tissue oxygen partial pressure was assessed with a polarographic platinum surface electrode. Cardiac index (3.69 ± 0.79 vs. 4.79 ± 0.73 l ⋅ min−1 ⋅ m−2) and muscle perfusion (4.07 ± 0.44 vs. 5.18 ± 0.36 ml ⋅ 100 g−1 ⋅ min−1) were increased at hematocrit of 20%. Oxygen delivery to skeletal muscle was reduced to 74% of baseline values (0.64 ± 0.06 vs. 0.48 ± 0.03 ml O2 ⋅ 100 g−1 ⋅ min−1). Nevertheless, tissue [Formula: see text] was preserved (27.4 ± 1.3 vs. 29.9 ± 1.4 Torr). Heterogeneity of muscle perfusion (relative dispersion) was reduced after ANH (20.0 ± 2.2 vs. 13.9 ± 1.5%). We conclude that a more homogeneous distribution of perfusion is one mechanism for the preservation of tissue oxygenation after moderate ANH, despite reduced oxygen delivery.


2017 ◽  
Vol 14 (135) ◽  
pp. 20170635 ◽  
Author(s):  
B. Zeller-Plumhoff ◽  
K. R. Daly ◽  
G. F. Clough ◽  
P. Schneider ◽  
T. Roose

The supply of oxygen in sufficient quantity is vital for the correct functioning of all organs in the human body, especially for skeletal muscle during exercise. Traditionally, microvascular oxygen supply capability is assessed by the analysis of morphological measures on transverse cross-sections of muscle, e.g. capillary density or capillary-to-fibre ratio. In this work, we investigate the relationship between microvascular structure and muscle tissue oxygenation in mice. Phase contrast imaging was performed using synchrotron radiation computed tomography (SR CT) to visualize red blood cells (RBCs) within the microvasculature in mouse soleus muscle. Image-based mathematical modelling of the oxygen diffusion from the RBCs into the muscle tissue was subsequently performed, as well as a morphometric analysis of the microvasculature. The mean tissue oxygenation was then compared with the morphological measures of the microvasculature. RBC volume fraction and spacing (mean distance of any point in tissue to the closest RBC) emerged as the best predictors for muscle tissue oxygenation, followed by length density (summed RBC length over muscle volume). The two-dimensional measures of capillary density and capillary-to-fibre ratio ranked last. We, therefore, conclude that, in order to assess the states of health of muscle tissue, it is advisable to rely on three-dimensional morphological measures rather than on the traditional two-dimensional measures.


1999 ◽  
Vol 15 (03) ◽  
pp. 223-228 ◽  
Author(s):  
Keith Attkiss ◽  
Mark Suski ◽  
T. Hunt ◽  
Harry Buncke

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2280-2280
Author(s):  
Christina M Barriteau ◽  
Abraham Chiu ◽  
Mark Rodeghier ◽  
Robert I Liem

Introduction: Sickle cell anemia (SCA) causes impaired tissue oxygenation. Children with SCA have lower peak fitness levels compared to controls. The contribution of alterations in skeletal muscle and cerebral tissue oxygenation to exercise limitation in SCA remains unclear. Near infrared spectroscopy (NIRS) is a validated, non-invasive method to measure tissue oxygen saturation. We hypothesize that compared to controls, children with SCA will exhibit greater reductions in regional tissue oxygen saturation (StO2) measured in the quadriceps (vastus lateralis) and pre frontal cortex (PFC) across all workloads during maximal cardiopulmonary exercise testing (CPET). Methods: We used the CASMED ELITE NIRS tissue oximeter to measure tissue oxygen saturation in the PFC and vastus lateralis (VL) muscle during all phases of maximal CPET, including warm up, active exercise and recovery, in 17 subjects with SCA (mean age 13.5 years) and 13 controls (mean age 15.2 years). Maximal CPET was conducted by cycle ergometry using a standard ramp protocol until volitional exhaustion was reached by all participants. Peak oxygen consumption (VO2) was measured from breath-by breath gas exchange data collected during CPET. Results: All subjects and controls completed maximal CPET without adverse events. Peak VO2 was not statistically different in subjects with SCA versus controls (25.3±4.7 vs 29.5±8.9 mL/kg/min, p=0.22). Compared to controls, subjects with SCA had significantly lower PFC StO2 at all time points during exercise, including warm up, 20%, 40%, 60%, 80% and 100% of peak work load (p<0.01) (Figure 1a). Subjects with SCA demonstrated a significant decrease in PFC StO2 from warm up to 80% peak work load (-3.0±2.9% , p=0.002) and from warm up to 100% peak work load (-5.4±3.4 %, p<0.001) (Figure 1b). In contrast, controls did not demonstrate significant decreases in PFC StO2 from warm up to any point during exercise testing. VL StO2 did not significantly differ between subjects and controls during exercise (p=0.149, Figure 1c). Subjects with SCA demonstrated a significant increase in VL StO2 from warm up to 0% (+3.2±2.8%, p<0.001) and 20% peak work load (+2.3±2.5%, p=0.002) and a significant decrease in StO2 from warm up to 60% (-4.8±4.6%, p<0.001), 80% (-8.6±5.9%, p<0.001) and 100% peak work load (-10.5±6.3%, p<0.001) (Figure 1d). Controls had significant increase in VL StO2 from warm up to 0% peak work load (+4.3±4.0%, p=0.02) and a significant decrease only at 80% (-6.5±6.3%, p=0.003). Differences in PFC and VL StO2 between subjects and controls were also examined at the highest VO2 achieved by all participants. At a VO2 of 17.6 mL/kg/min, PFC StO2 was significantly lower in subjects with SCA versus controls (69.2±6.6 vs 79.5±5.3%, p<0.001). There was a trend toward lower VL StO2 in subjects versus controls (67.7±9.0 vs 73.2±7.9%, p=0.09). Conclusion: Unlike VL tissue oxygenation, PFC tissue oxygenation is relatively well preserved in subjects with SCA and controls during maximal CPET. However, compared to controls, subjects with SCA have lower PFC tissue oxygenation at warm up and during exercise as well as demonstrate significantly greater decreases in PFC tissue oxygenation during later stages of exercise. In contrast, VL tissue oxygenation is similar at warm up and during exercise for subjects and controls. VL tissue oxygenation increases during initial stages of exercise in a similar fashion in subjects with SCA and controls but subsequent decreases from warm up are greater in subjects with SCA during later stages of exercise. Future studies may further elucidate how SCA contributes to these observed differences in regional tissue oxygenation during exercise and their potential impact on exercise safety and fitness in this population. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document