Involvement of The Hormones Ethylene and Abscisic Acid in Some Adaptive Responses of Plants to Submergence, Soil Waterlogging and Oxygen Shortage

Author(s):  
Michael B. Jackson
2002 ◽  
Vol 29 (1) ◽  
pp. 55 ◽  
Author(s):  
Michele Wolfe Bianchi ◽  
Catherine Damerval ◽  
Nicole Vartanian

Ten proteins differentially regulated by progressive drought stress in Arabidopsis Columbia wild-type, axr1-3 and axr2-1auxin-insensitive mutants, were identified from internal amino acid microsequencing. These proteins fell into two categories: (i) stress-related proteins, known to be induced by rapid water stress via abscisic acid (ABA)-dependent or -independent pathways [late embryogenesis abundant (LEA)-like and heat shock cognate (HS) 70, respectively], or in response to pathogens or oxidative stress [β-1,3 glucanase (BG), annexin] and (ii) metabolic enzymes [glutamine synthetase (GS), fructokinase (Frk), caffeoyl-CoA-3-O-methyltransferase (CCoAOMT)]. The differential behaviour of these proteins highlighted a role for AXR2 and/or AXR1 in the regulation of their abundance during drought adaptation. In particular, reduced induction of RD29B, GS and annexin, and overexpression of BG2 were observed specifically in the axr1-3 mutant, which is dramatically affected in several ABA-dependent drought adaptive responses, such as drought rhizogenesis. Altogether these results indicate cross-talk between auxin- and ABA-signalling in Arabidopsis drought responses.


HortScience ◽  
2017 ◽  
Vol 52 (4) ◽  
pp. 606-611 ◽  
Author(s):  
Shinsuke Agehara ◽  
Daniel I. Leskovar

Vegetable transplants grown in commercial high-density trays can quickly outgrow the optimal size for shipping and transplanting, limiting transplant performance, and marketing flexibility for commercial nurseries. Abscisic acid (ABA) and uniconazole can suppress shoot growth by inducing stress-adaptive responses and inhibiting gibberellin synthesis, respectively. We evaluated the effectiveness of the two growth regulators in prolonging marketability of ‘Florida 91’ and ‘Mariana’ tomato (Solanum lycopersicum L.) transplants at commercial nursery greenhouses in Texas and Florida. Spray treatments in the Texas experiment were 0 and 3.8 mm ABA at 7, 5, 3, or 1 days before maturity (DBM), and those in the Florida experiment were no spray control, 3.8 mm ABA at 7, 5, 3, or 1 DBM, and 34 μm uniconazole at 4 DBM. Both ABA and uniconazole showed minimal cultivar-specific effects. Different growth modifications were induced by ABA and uniconazole. First, suppression of stem elongation by ABA was reversible by 7 days after maturity (DAM), whereas that by uniconazole lasted for 20 days or until 16 DAM with up to 15% suppression in stem elongation. Second, only ABA inhibited leaf expansion and shoot dry matter accumulation. The primary growth-modulating effect of uniconazole was limited to height control, which is beneficial for producing compact transplants, rather than as a growth holding strategy. By contrast, the overall growth suppression by ABA is desirable for prolonging transplant marketability. Importantly, the magnitude of this growth suppression was moderate (up to 22% shoot biomass reduction at 8 DAM) and transient, followed by a rapid recovery. Furthermore, ABA caused relatively smaller inhibition in root growth, allowing sufficient root development and increasing the root-to-shoot ratio at 0 to 8 DAM. The growth suppression by ABA was maximal when it was applied at 7 to 5 DBM, indicating the age-dependent sensitivity of tomato seedlings to exogenous ABA. Although leaf chlorosis was induced by ABA in a similar age-dependent manner, it was transient and reversible by 7 DAM. These results suggest that ABA application 7 to 5 DBM is an effective growth holding strategy for tomato transplants.


2005 ◽  
Vol 123 (2) ◽  
pp. 111-119 ◽  
Author(s):  
Marta Riera ◽  
Christiane Valon ◽  
Francesca Fenzi ◽  
Jerome Giraudat ◽  
Jeffrey Leung

2021 ◽  
Author(s):  
Laura Bacete ◽  
Julia Schulz ◽  
Timo Engelsdorf ◽  
Zdenka Bartosova ◽  
Lauri Vaahtera ◽  
...  

Plant cells can be distinguished from animal cells by their cell walls and high turgor pressure. Although changes in turgor and stiffness of cell walls seem coordinated, we know little about the mechanism responsible for coordination. Evidence has accumulated that plants, like yeast, have a dedicated cell wall integrity maintenance mechanism. This mechanism monitors the functional integrity of the wall and maintains it through adaptive responses when cell wall damage occurs during growth, development, and interactions with the environment. The adaptive responses include osmo-sensitive-induction of phytohormone production, defence responses as well as changes in cell wall composition and structure. Here, we investigate how the cell wall integrity maintenance mechanism coordinates changes in cell wall stiffness and turgor in Arabidopsis thaliana. We show that the production of abscisic acid (ABA), the phytohormone modulating turgor pressure and responses to drought, depends on the presence of a functional cell wall. We find that the cell wall integrity sensor THESEUS1 modulates mechanical properties of walls, turgor loss point and ABA biosynthesis. We identify RECEPTOR-LIKE PROTEIN 12 as a new component of cell wall integrity maintenance controlling cell wall damage-induced jasmonic acid production. Based on the results we propose that THE1 is responsible for coordinating changes in turgor pressure and cell wall stiffness.


2021 ◽  
Vol 119 (1) ◽  
pp. e2119258119
Author(s):  
Laura Bacete ◽  
Julia Schulz ◽  
Timo Engelsdorf ◽  
Zdenka Bartosova ◽  
Lauri Vaahtera ◽  
...  

Plant cells can be distinguished from animal cells by their cell walls and high-turgor pressure. Although changes in turgor and the stiffness of cell walls seem coordinated, we know little about the mechanism responsible for coordination. Evidence has accumulated that plants, like yeast, have a dedicated cell wall integrity maintenance mechanism. It monitors the functional integrity of the wall and maintains integrity through adaptive responses induced by cell wall damage arising during growth, development, and interactions with the environment. These adaptive responses include osmosensitive induction of phytohormone production, defense responses, as well as changes in cell wall composition and structure. Here, we investigate how the cell wall integrity maintenance mechanism coordinates changes in cell wall stiffness and turgor in Arabidopsis thaliana. We show that the production of abscisic acid (ABA), the phytohormone-modulating turgor pressure, and responses to drought depend on the presence of a functional cell wall. We find that the cell wall integrity sensor THESEUS1 modulates mechanical properties of walls, turgor loss point, ABA biosynthesis, and ABA-controlled processes. We identify RECEPTOR-LIKE PROTEIN 12 as a component of cell wall integrity maintenance–controlling, cell wall damage–induced jasmonic acid (JA) production. We propose that THE1 is responsible for coordinating changes in turgor pressure and cell wall stiffness.


Author(s):  
Aarti Gupta ◽  
Mamta Bhardwaj ◽  
Lam-Son Phan Tran

: Plants modulate the metabolism of phytohormones and their signaling pathways under drought to regulate physiological and adaptive responses. Jasmonic acid (JA) is one of the major classes of phytohormones and has been found to potentially enhance plant tolerance to various abiotic stresses, including drought. The JASMONATE ZIM-DOMAIN (JAZ) proteins are the negative regulators in the JA-signaling pathway. The JAZ protein family is explicit to plants and involved in the regulation of numerous biological processes, including drought-responsive mechanisms. In this review, we synthesize the mechanistic insight into the roles of JAZ proteins in regulation of drought responses by connecting the JA-signaling with abscisic acid-signaling to modulate drought-responsive physiological processes.


Sign in / Sign up

Export Citation Format

Share Document