A Comparison of the Wave-Induced Momentum Flux to Breaking and Nonbreaking Waves

Author(s):  
M. L. Banner
Keyword(s):  
2019 ◽  
Vol 49 (6) ◽  
pp. 1369-1379 ◽  
Author(s):  
Joey J. Voermans ◽  
Henrique Rapizo ◽  
Hongyu Ma ◽  
Fangli Qiao ◽  
Alexander V. Babanin

AbstractObservations of wind stress during extreme winds are required to improve predictability of tropical cyclone track and intensity. A common method to approximate the wind stress is by measuring the turbulent momentum flux directly. However, during high wind speeds, wave heights are typically of the same order of magnitude as instrument heights, and thus, turbulent momentum flux observations alone are insufficient to estimate wind stresses in tropical cyclones, as wave-induced stresses contribute to the wind stress at the height of measurements. In this study, wind stress observations during the near passage of Tropical Cyclone Olwyn are presented through measurements of the mean wind speed and turbulent momentum flux at 8.8 and 14.8 m above the ocean surface. The high sampling frequency of the water surface displacement (up to 2.5 Hz) allowed for estimations of the wave-induced stresses by parameterizing the wave input source function. During high wind speeds, our results show that the discrepancy between the wind stress and the turbulent stress can be attributed to the wave-induced stress. It is observed that for > 1 m s−1, the wave-induced stress contributes to 63% and 47% of the wind stress at 8.8 and 14.8 m above the ocean surface, respectively. Thus, measurements of wind stresses based on turbulent stresses alone underestimate wind stresses during high wind speed conditions. We show that this discrepancy can be solved for through a simple predictive model of the wave-induced stress using only observations of the turbulent stress and significant wave height.


2013 ◽  
Vol 43 (10) ◽  
pp. 2156-2172 ◽  
Author(s):  
Laurent Grare ◽  
Luc Lenain ◽  
W. Kendall Melville

Abstract An analysis of coherent measurements of winds and waves from data collected during the Office of Naval Research (ONR) High-Resolution air–sea interaction (HiRes) program, from the Floating Instrument Platform (R/P FLIP), off the coast of northern California in June 2010 is presented. A suite of wind and wave measuring systems was deployed to resolve the modulation of the marine atmospheric boundary layer by waves. Spectral analysis of the data provided the wave-induced components of the wind velocity for various wind–wave conditions. The power spectral density, the amplitude, and the phase (relative to the waves) of these wave-induced components are computed and bin averaged over spectral wave age c/U(z) or c/u*, where c is the linear phase speed of the waves, U(z) is the mean wind speed measured at the height z of the anemometer, and u* is the friction velocity in the air. Results are qualitatively consistent with the critical layer theory of Miles. Across the critical height zc, defined such that U(zc) = c, the wave-induced vertical and horizontal velocities change significantly in both amplitude and phase. The measured wave-induced momentum flux shows that, for growing waves, less than 10% of the momentum flux at z ≈ 10 m is supported by waves longer than approximately 15 m. For older sea states, these waves are able to generate upward wave-induced momentum flux opposed to the overall downward momentum flux. The measured amplitude of this upward wave-induced momentum flux was up to 20% of the value of the total wind stress when Cp/u* > 60, where Cp is the phase speed at the peak of the wave spectrum.


2015 ◽  
Vol 15 (11) ◽  
pp. 15543-15570 ◽  
Author(s):  
J. Prytherch ◽  
M. J. Yelland ◽  
I. M. Brooks ◽  
D. J. Tupman ◽  
R. W. Pascal ◽  
...  

Abstract. Direct measurements of the turbulent air–sea fluxes of momentum, heat, moisture and gases. are often made using sensors mounted on ships. Ship-based turbulent wind measurements are corrected for platform motion using well established techniques, but biases at scales associated with wave and platform motion are often still apparent in the flux measurements. It has been uncertain whether this signal is due to time-varying distortion of the air flow over the platform, or to wind–wave interactions impacting the turbulence. Methods for removing such motion-scale biases from scalar measurements have previously been published but their application to momentum flux measurements remains controversial. Here we show that the measured motion-scale bias has a dependence on the horizontal ship velocity, and that a correction for it reduces the dependence of the measured momentum flux on the orientation of the ship to the wind. We conclude that the bias is due to experimental error, and that time-varying motion-dependent flow distortion is the likely source.


Author(s):  
Luning Sun ◽  
Andrew Kennedy ◽  
Andrew Kennedy

Breaking wave induced run-up can significantly risk infrastructure in coastal areas. For instance, run-up elevation can cause coastal flooding. Moreover, the momentum flux transported onshore can also exert forces on beaches and coastal structures. This study aims at predicting shoreline forces and inundation depths via numerical simulation as well as better understanding coastal run-up events.


2008 ◽  
Vol 65 (8) ◽  
pp. 2646-2660 ◽  
Author(s):  
Kirsty E. Hanley ◽  
Stephen E. Belcher

Abstract The interaction between ocean surface waves and the overlying wind leads to a transfer of momentum across the air–sea interface. Atmospheric and oceanic models typically allow for momentum transfer to be directed only downward, from the atmosphere to the ocean. Recent observations have suggested that momentum can also be transferred upward when long wavelength waves, characteristic of remotely generated swell, propagate faster than the wind speed. The effect of upward momentum transfer on the marine atmospheric boundary layer is investigated here using idealized models that solve the momentum budget above the ocean surface. A variant of the classical Ekman model that accounts for the wave-induced stress demonstrates that, although the momentum flux due to the waves penetrates only a small fraction of the depth of the boundary layer, the wind profile is profoundly changed through its whole depth. When the upward momentum transfer from surface waves sufficiently exceeds the downward turbulent momentum flux, then the near-surface wind accelerates, resulting in a low-level wave-driven wind jet. This increases the Coriolis force in the boundary layer, and so the wind turns in the opposite direction to the classical Ekman layer. Calculations of the wave-induced stress due to a wave spectrum representative of fast-moving swell demonstrate upward momentum transfer that is dominated by contributions from waves in the vicinity of the peak in the swell spectrum. This is in contrast to wind-driven waves whose wave-induced stress is dominated by very short wavelength waves. Hence the role of swell can be characterized by the inverse wave age based on the wave phase speed corresponding to the peak in the spectrum. For a spectrum of waves, the total momentum flux is found to reverse sign and become upward, from waves to wind, when the inverse wave age drops below the range 0.15–0.2, which agrees reasonably well with previously published oceanic observations.


2009 ◽  
Vol 66 (8) ◽  
pp. 2256-2271 ◽  
Author(s):  
Alvaro Semedo ◽  
Øyvind Saetra ◽  
Anna Rutgersson ◽  
Kimmo K. Kahma ◽  
Heidi Pettersson

Abstract Recent field observations and large-eddy simulations have shown that the impact of fast swell on the marine atmospheric boundary layer (MABL) might be stronger than previously assumed. For low to moderate winds blowing in the same direction as the waves, swell propagates faster than the mean wind. The momentum flux above the sea surface will then have two major components: the turbulent shear stress, directed downward, and the swell-induced stress, directed upward. For sufficiently high wave age values, the wave-induced component becomes increasingly dominant, and the total momentum flux will be directed into the atmosphere. Recent field measurements have shown that this upward momentum transfer from the ocean into the atmosphere has a considerable impact on the surface layer flow dynamics and on the turbulence structure of the overall MABL. The vertical wind profile will no longer exhibit a logarithmic shape because an acceleration of the airflow near the surface will take place, generating a low-level wave-driven wind maximum (a wind jet). As waves propagate away from their generation area as swell, some of the wave momentum will be returned to the atmosphere in the form of wave-driven winds. A model that qualitatively reproduces the wave-following atmospheric flow and the wave-generated wind maximum, as seen from measurements, is proposed. The model assumes a stationary momentum and turbulent kinetic energy balance and uses the dampening of the waves at the surface to describe the momentum flux from the waves to the atmosphere. In this study, simultaneous observations of wind profiles, turbulent fluxes, and wave spectra during swell events are presented and compared with the model. In the absence of an established model for the linear damping ratio during swell conditions, the model is combined with observations to estimate the wave damping. For the cases in which the observations showed a pronounced swell signal and almost no wind waves, the agreement between observed and modeled wind profiles is remarkably good. The resulting attenuation length is found to be relatively short, which suggests that the estimated damping ratios are too large. The authors attribute this, at least partly, to processes not accounted for by the model, such as the existence of an atmospheric background wind. In the model, this extra momentum must be supplied by the waves in terms of a larger damping ratio.


2005 ◽  
Vol 62 (9) ◽  
pp. 3213-3231 ◽  
Author(s):  
Chih-Chieh Chen ◽  
Dale R. Durran ◽  
Gregory J. Hakim

Abstract The evolution of mountain-wave-induced momentum flux is examined through idealized numerical simulations during the passage of a time-evolving synoptic-scale flow over an isolated 3D mountain of height h. The dynamically consistent synoptic-scale flow U accelerates and decelerates with a period of 50 h; the maximum wind arrives over the mountain at 25 h. The synoptic-scale static stability N is constant, so the time dependence of the nonlinearity parameter, ɛ(t) = Nh/U(t), is symmetric about a minimum value at 25 h. The evolution of the vertical profile of momentum flux shows substantial asymmetry about the midpoint of the cycle even though the nonlinearity parameter is symmetric. Larger downward momentum fluxes are found during the accelerating phase, and the largest momentum fluxes occur in the mid- and upper troposphere before the maximum background flow arrives at the mountain. For a period of roughly 15 h, this vertical distribution of momentum flux accelerates the lower-tropospheric zonal-mean winds due to low-level momentum flux convergence. Conservation of wave action and Wentzel–Kramers–Brillouin (WKB) ray tracing are used to reconstruct the time–altitude dependence of the mountain-wave momentum flux in a semianalytic procedure that is completely independent of the full numerical simulations. For quasi-linear cases, the reconstructions show good agreement with the numerical simulations, implying that the basic asymmetry obtained in the full numerical simulations may be interpreted using WKB theory. These results demonstrate that even slow variations in the mean flow, with a time scale of 2 days, play a dominant role in regulating the vertical profile of mountain-wave-induced momentum flux. The time evolution of cross-mountain pressure drag is also examined in this study. For almost-linear cases, the pressure drag is well predicted under steady-state linear theory by using the instantaneous incident flow. Nevertheless, for mountains high enough to preserve a moderate degree of nonlinearity when the synoptic-scale incident flow is strongest, the evolution of cross-mountain pressure drag is no longer symmetric about the time of maximum wind. A higher drag state is found when the cross-mountain flow is accelerating. These results suggest that the local character of the topographically induced disturbance cannot be solely determined by the instantaneous value of the nonlinearity parameter ɛ.


2015 ◽  
Vol 15 (18) ◽  
pp. 10619-10629 ◽  
Author(s):  
J. Prytherch ◽  
M. J. Yelland ◽  
I. M. Brooks ◽  
D. J. Tupman ◽  
R. W. Pascal ◽  
...  

Abstract. Direct measurements of the turbulent air–sea fluxes of momentum, heat, moisture and gases are often made using sensors mounted on ships. Ship-based turbulent wind measurements are corrected for platform motion using well established techniques, but biases at scales associated with wave and platform motion are often still apparent in the flux measurements. It has been uncertain whether this signal is due to time-varying distortion of the air flow over the platform or to wind–wave interactions impacting the turbulence. Methods for removing such motion-scale biases from scalar measurements have previously been published but their application to momentum flux measurements remains controversial. Here we show that the measured motion-scale bias has a dependence on the horizontal ship velocity and that a correction for it reduces the dependence of the measured momentum flux on the orientation of the ship to the wind. We conclude that the bias is due to experimental error and that time-varying motion-dependent flow distortion is the likely source.


Sign in / Sign up

Export Citation Format

Share Document