Two-Way Solid Flat Plate Design

Author(s):  
Edward S. Hoffman ◽  
David P. Gustafson ◽  
Albert J. Gouwens
Keyword(s):  
PCI Journal ◽  
1969 ◽  
Vol 14 (6) ◽  
pp. 62-77
Author(s):  
George D. Nasser

Author(s):  
Clayton Nguyen ◽  
Lu Shen ◽  
Sheldon Jeter ◽  
Peter Loutzenhiser

Development is underway for modifications to an existing central receiver power tower concentrator solar power research facility to accommodate a new solar chemical test module. Optical analysis, using Sol Trace, is done to model the existing heliostat field, general tower geometry, and planned system layout to predict the incident irradiation to the new experimental receiver called the Solar Reducer Receiver Reactor (SR3). Within the SR3, a layer of particles flowing over an inclined plane will be highly irradiated to chemically reduce the particulate. To accommodate the inclined plane reactor geometry, a beam down mirror will be modeled. An estimated 1000 suns will be required at the aperture. Currently, the field typically provides around 300 suns over a 1 m × 1 m area. To achieve the required higher flux, a secondary concentrator will concentrate the irradiation from a larger area into a smaller focal spot. Rather than using an expensive compound parabolic design, a series of flat plate petals will instead be used to create a cost effective secondary. The flat plate design also provides added benefits for ease of installation, manufacturing, and cooling. The ray tracing model is used to compare several design parameters including the number of petals, petal length, aperture size and the inclination angle of the petals for the secondary. With these parameters selected, designs have been created for a test module to be constructed at King Saud University’s Riyadh Techno Valley CSP Tower. Additionally, the model is used to estimate the necessary cooling needed to operate both the secondary concentrator and the beam down mirror. These models will be tested experimentally using several quartz heaters. The beam down will be cooled by forced convection air, while the secondary concentrator will use water cooling. Lab experiments will measure the feasibility and effectiveness of the proposed cooling before construction. Once these proof of concepts tests have been completed, construction of the secondary concentrator and beam down mirror will begin to allow for testing in 2018.


1962 ◽  
Vol 5 (2) ◽  
pp. 89-94
Author(s):  
FRANK A. BLAKEY
Keyword(s):  

2018 ◽  
Vol 2018 ◽  
pp. 1-21 ◽  
Author(s):  
Alsanossi M. Aboghrara ◽  
M. A. Alghoul ◽  
B. T. H. T. Baharudin ◽  
A. M. Elbreki ◽  
A. A. Ammar ◽  
...  

Previous works revealed that cross-corrugated absorber plate design and jet impingement on a flat absorber plate resulted in a significant increase in the performance of a solar air heater (SAH). Involving these two designs into one continuous design to improve the SAH performance remains absent in the literature. This study aimed to evaluate the achieved enhancement on performance parameters of a SAH with jet impingement on a corrugated absorber plate. An energy balance model was developed to compare the performance parameters of the proposed SAH with the other two SAHs. At a clear sky day and a mass flow rate of 0.04 kg/s, the hourly results revealed that the max fluid outlet temperatures for the proposed SAH, jet-to-flat plate SAH, and cross-corrugated plate SAH are 321, 317, and 313 K, respectively; the max absorber plate temperatures are 323.5, 326.5, and 328 K, respectively; the maximum temperature differences between the absorber plate and fluid outlet are ~3, 9, and 15 K, respectively; the max efficiencies are 65.7, 64.8, and 60%, respectively. Statistical t-test results confirmed significant differences between the mean efficiency of the proposed SAH and SAH with jet-to-flat plate. Hence, the proposed design is considered superior in improving the performance parameters of SAH compared to other designs.


Author(s):  
J. P. Robinson ◽  
P. G. Lenhert

Crystallographic studies of rabbit Fc using X-ray diffraction patterns were recently reported. The unit cell constants were reported to be a = 69. 2 A°, b = 73. 1 A°, c = 60. 6 A°, B = 104° 30', space group P21, monoclinic, volume of asymmetric unit V = 148, 000 A°3. The molecular weight of the fragment was determined to be 55, 000 ± 2000 which is in agreement with earlier determinations by other methods.Fc crystals were formed in water or dilute phosphate buffer at neutral pH. The resulting crystal was a flat plate as previously described. Preparations of small crystals were negatively stained by mixing the suspension with equal volumes of 2% silicotungstate at neutral pH. A drop of the mixture was placed on a carbon coated grid and allowed to stand for a few minutes. The excess liquid was removed and the grid was immediately put in the microscope.


PCI Journal ◽  
1974 ◽  
Vol 19 (3) ◽  
pp. 74-91 ◽  
Author(s):  
Stephen W. Smith ◽  
Ned H. Burns
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document