scholarly journals Parametric Study on the Thermal Performance and Optimal Design Elements of Solar Air Heater Enhanced with Jet Impingement on a Corrugated Absorber Plate

2018 ◽  
Vol 2018 ◽  
pp. 1-21 ◽  
Author(s):  
Alsanossi M. Aboghrara ◽  
M. A. Alghoul ◽  
B. T. H. T. Baharudin ◽  
A. M. Elbreki ◽  
A. A. Ammar ◽  
...  

Previous works revealed that cross-corrugated absorber plate design and jet impingement on a flat absorber plate resulted in a significant increase in the performance of a solar air heater (SAH). Involving these two designs into one continuous design to improve the SAH performance remains absent in the literature. This study aimed to evaluate the achieved enhancement on performance parameters of a SAH with jet impingement on a corrugated absorber plate. An energy balance model was developed to compare the performance parameters of the proposed SAH with the other two SAHs. At a clear sky day and a mass flow rate of 0.04 kg/s, the hourly results revealed that the max fluid outlet temperatures for the proposed SAH, jet-to-flat plate SAH, and cross-corrugated plate SAH are 321, 317, and 313 K, respectively; the max absorber plate temperatures are 323.5, 326.5, and 328 K, respectively; the maximum temperature differences between the absorber plate and fluid outlet are ~3, 9, and 15 K, respectively; the max efficiencies are 65.7, 64.8, and 60%, respectively. Statistical t-test results confirmed significant differences between the mean efficiency of the proposed SAH and SAH with jet-to-flat plate. Hence, the proposed design is considered superior in improving the performance parameters of SAH compared to other designs.

2014 ◽  
Vol 493 ◽  
pp. 86-92 ◽  
Author(s):  
Ekadewi A. Handoyo ◽  
Djatmiko Ichsani ◽  
Prabowo ◽  
S. Sutardi

A solar air heater (SAH) is a simple heater using solar radiation that is useful for drying or space heating. Unfortunately, heat transfer from the absorber plate to the air inside the solar air heater is low. Some researchers reported that obstacles are able to improve the heat transfer in a flat plate solar air collector and others found that a v-corrugated absorber plate gives better heat transfer than a flat plate. Yet, no work of combining these two findings is found.This paper describes the result of experimental study on a SAH with v-corrugated absorber plate and obstacles bent vertically started from 80oto 0owith interval 10oon its bottom plate. Experiments were conducted indoor at five different Reynolds numbers (1447 Re 7237) and three different radiation intensities (430, 573, and 716 W/m2).It is found that the obstacles improve SAH performance. Both the air temperature rise and efficiency increase with inserting obstacles bent at any angle vertically. Unfortunately, the air pressure drop is increasing, too. Obstacles bent vertically at smaller angle (means more straight) give higher air temperature rise and efficiency. However, the optimum angle is found 30o. The air temperature rise and efficiency will be 5.3% lower when the obstacles bent 30oinstead of 0o, but the pressure drop will be 17.2% lower.


2017 ◽  
Vol 10 ◽  
pp. 111-120 ◽  
Author(s):  
Alsanossi M. Aboghrara ◽  
B.T.H.T. Baharudin ◽  
M.A. Alghoul ◽  
Nor Mariah Adam ◽  
A.A. Hairuddin ◽  
...  

Solar Energy ◽  
2021 ◽  
Vol 214 ◽  
pp. 355-366
Author(s):  
Refat Moshery ◽  
Tan Yong Chai ◽  
Kamaruzzaman Sopian ◽  
Ahmad Fudholi ◽  
Ali H.A. Al-Waeli

Author(s):  
Nguyen Minh Phu ◽  
Nguyen Thanh Luan

In this paper, eleven roughness elements in solar air heater duct analysed both energy and exergy were reviewed. Various roughness geometries such as ribs, twisted tap, baffles, and metal waste were surveyed about heat transfer and friction when the air flow is passing absorber plate. Evaluation criteria of roughness on the absorber plate including thermohydraulic performance parameter, thermal efficiency, effective efficiency, and exergy efficiency were presented and compared. Results showed that protruded ribs in arc shape indicated the largest Nusselt number. The ribs exhibited the highest thermohydraulic performance parameter at a Reynolds number greater than 5000. Jet impingement with arc-shaped ribs and roughness elements of metal waste were found the smallest exergy efficiencies. The biggest effective and exergy efficiencies were obtained to be 70% and 1.9%, respectively. The thermohydraulic performance parameter varied from 0.5 to 2.0. The review paper aims to provide information about roughness geometries investigated both first and second laws of thermodynamics and figure of merits to overview artificial roughness in a solar air heater.


2014 ◽  
Vol 2014 ◽  
pp. 1-18 ◽  
Author(s):  
Rajendra Karwa ◽  
Shweta Baghel

The paper presents results of an analysis carried out using a mathematical model to find the effect of the uncertainties, variations, and tolerances in design and ambient parameters on the thermohydraulic performance of flat plate solar air heater. Analysis shows that, for the range of flow rates considered, a duct height of 10 mm is preferred from the thermohydraulic consideration. The thermal efficiency changes by about 2.6% on variation in the wind heat transfer coefficient, ±5 K variation in sky temperature affects the efficiency by about ±1.3%, and solar insolation variation from 500 to 1000 Wm−2 affects the efficiency by about −1.5 to 1.3% at the lowest flow rate of 0.01 kgs−1 m−2 of the absorber plate with black paint. In general, these effects reduce with increase in flow rate and are lower for collector with selective coating on the absorber plate surface. The tolerances in the duct height and absorber plate emissivity should be small while positive tolerance of 3° in the collector slope for winter operation and ±3° for year round operation, and a positive tolerance for the gap between the absorber plate and glass cover at nominal value of 40 mm are recommended.


2015 ◽  
Vol 138 (1) ◽  
Author(s):  
Satyender Singh ◽  
Prashant Dhiman

Thermal performance of a single-pass single-glass cover solar air heater consisting of semicircular absorber plate finned with rectangular longitudinal fins is investigated. The analysis is carried out for different hydraulic diameters, which were obtained by varying the diameter of the duct from 0.3–0.5 m. One to five numbers of fins are considered. Reynolds number ranges from 1600–4300. Analytical solutions for energy balance equations of different elements and duct flow of the solar air heater are presented; results are compared with finite-volume methodology based numerical solutions obtained from ansys fluent commercial software, and a fairly good agreement is achieved. Moreover, analysis is extended to check the effect of double-glass cover and the recycle of the exiting air. Results revealed that the use of double-glass cover and recycle operation improves the thermal performance of solar air heater.


Sign in / Sign up

Export Citation Format

Share Document