Curve Fitting and Interpolation

2022 ◽  
pp. 241-270
Author(s):  
Haksun Li, PhD
Keyword(s):  
TAPPI Journal ◽  
2013 ◽  
Vol 12 (3) ◽  
pp. 9-14
Author(s):  
RENMEI XU ◽  
CELESTE M. CALKINS

This work investigates the ink mileage of dry toners in electrophotography (EP). Four different substrates were printed on a dry-toner color production Xerox iGen3 EP press. The print layout contained patches with different cyan, magenta, yellow, and black tonal values from 10% to 100%. Toner amounts on cyan patches were measured using an analytical method. Printed patches and unprinted paper samples, as well as dry toners, were dissolved in concentrated nitric acid. The copper concentrations in the dissolved solutions were analyzed by a Zeeman graphite furnace atomic absorption spectrometer. Analytical results were calculated to determine the toner amounts on paper for different tonal values. Their corresponding reflection densities were also measured. All data were plotted with OriginPro® 8 software, and four mathematical models were used for curve fitting. It was found that the C-S model fitted the experimental data of the two uncoated papers better than the other three models. None of the four models fitted the experimental data of the two coated papers, while the linear model was found to fit the data well. Linear fitting was the best in the practical density region for the two coated papers. Ink mileage curves obtained from curve fitting were used to estimate how much ink was required to achieve a target density for each paper; hence, the ink mileage was calculated. The highest ink mileage was 3.39 times the lowest ink mileage. The rougher the paper surface, the higher the requirement for ink film weight, and the lower ink mileage. No correlation was found between ink mileage and paper porosity.


2012 ◽  
Vol 19 (2) ◽  
pp. 381-394
Author(s):  
José Pereira ◽  
Octavian Postolache ◽  
Pedro Girão

Using A Segmented Voltage Sweep Mode and A Gaussian Curve Fitting Method to Improve Heavy Metal Measurement System PerformanceThis paper presents a voltammetric segmented voltage sweep mode that can be used to identify and measure heavy metals' concentrations. The proposed sweep mode covers a set of voltage ranges that are centered around the redox potentials of the metals that are under analysis. The heavy metal measurement system can take advantage of the historical database of measurements to identify the metals with higher concentrations in a given geographical area, and perform a segmented sweep around predefined voltage ranges or, alternatively, the system can perform a fast linear voltage sweep to identify the voltammetric current peaks and then perform a segmented voltage sweep around the set of voltages that are associated with the voltammetric current peaks. The paper also includes the presentation of two auto-calibration modes that can be used to improve system's reliability and proposes the usage of a Gaussian curve fitting of voltammetric data to identify heavy metals and to evaluate their concentrations. Several simulation and experimental results, that validate the theoretical expectations, are also presented in the paper.


1989 ◽  
Vol 21 (6-7) ◽  
pp. 593-602 ◽  
Author(s):  
Andrew T. Watkin ◽  
W. Wesley Eckenfelder

A technique for rapidly determining Monod and inhibition kinetic parameters in activated sludge is evaluated. The method studied is known as the fed-batch reactor technique and requires approximately three hours to complete. The technique allows for a gradual build-up of substrate in the test reactor by introducing the substrate at a feed rate greater than the maximum substrate utilization rate. Both inhibitory and non-inhibitory substrate responses are modeled using a nonlinear numerical curve-fitting technique. The responses of both glucose and 2,4-dichlorophenol (DCP) are studied using activated sludges with various acclimation histories. Statistically different inhibition constants, KI, for DCP inhibition of glucose utilization were found for the various sludges studied. The curve-fitting algorithm was verified in its ability to accurately retrieve two kinetic parameters from synthetic data generated by superimposing normally distributed random error onto the two parameter numerical solution generated by the algorithm.


2018 ◽  
Author(s):  
Mattathias D. Needle ◽  
◽  
Juliet G. Crider
Keyword(s):  

2018 ◽  
Author(s):  
David E. Grandstaff ◽  
◽  
Logan A. Wiest ◽  
Ilya V. Buynevich ◽  
Dennis O. Terry
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document