Fermentation and Growth Response of a Primary Poultry Isolate of Salmonella Typhimurium Grown under Strict Anaerobic Conditions in Continuous Culture and Amino Acid-Limited Batch Culture

Author(s):  
K. G. Maciorowski ◽  
D. J. Nisbet ◽  
S. D. Ha ◽  
D. E. Corrier ◽  
J. R. DeLoach ◽  
...  
1975 ◽  
Vol 150 (1) ◽  
pp. 21-29 ◽  
Author(s):  
W W Kay ◽  
P D Bragg

In contrast with wild-type Salmonella typhimurium LT2, strain HfrA did not have ATP-driven energy-dependent transhydrogenase activity, although ATP-dependent quenching of atebrin fluorescence was normal. Respiration-dependent and energy-independent transhydrogenase, and Ca2+-activated ATPase (adenosine triphosphatase) activities were similar in both strains. Purified ATPases from the two strains had similar specific activities, similar subunit polypeptides, and were equally effective in restoring energy-dependent transhydrogenase activities to membrane particles of strain LT2 from which the ATPase had been stripped. The purified ATPases from both strains could restore respiration-dependent but not ATP-dependent transhydrogenation to stripped particles of strain HfrA. Both strains grew aerobically equally well on salts media containing glucose, malate, succinate, citrate, acetate, pyruvate, fumarate, lactate or aspartate as substrates. Growth on glucose under anaerobic conditions was similar. Strains LT2 and HfrA were equally effective in the accumulation under both aerobic and anaerobic conditions of the amino acids proline, phenylalanine, histidine, lysine, isoleucine and aspartic acid. Inhibition of amino acid accumulation by KCN and dicyclohexylcarbodi-imide occurred to the same extent in both strains. The complete inhibition by dicyclohexylcarbodi-imide of amino acid uptake under anaerobic conditions suggested that ATP could drive amino acid uptake in both strains. The ability of strain HfrA to carry out ATP-dependent transport or quenching of atebrin fluorescence but not ATP-dependent transhydrogenation is different from the wild-type strain and from any previously described energy-coupling mutant. It is difficult to reconcile the properties of this mutant with the chemiosmotic hypothesis.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Tânia Pinheiro ◽  
Ka Ying Florence Lip ◽  
Estéfani García-Ríos ◽  
Amparo Querol ◽  
José Teixeira ◽  
...  

AbstractElucidation of temperature tolerance mechanisms in yeast is essential for enhancing cellular robustness of strains, providing more economically and sustainable processes. We investigated the differential responses of three distinct Saccharomyces cerevisiae strains, an industrial wine strain, ADY5, a laboratory strain, CEN.PK113-7D and an industrial bioethanol strain, Ethanol Red, grown at sub- and supra-optimal temperatures under chemostat conditions. We employed anaerobic conditions, mimicking the industrial processes. The proteomic profile of these strains in all conditions was performed by sequential window acquisition of all theoretical spectra-mass spectrometry (SWATH-MS), allowing the quantification of 997 proteins, data available via ProteomeXchange (PXD016567). Our analysis demonstrated that temperature responses differ between the strains; however, we also found some common responsive proteins, revealing that the response to temperature involves general stress and specific mechanisms. Overall, sub-optimal temperature conditions involved a higher remodeling of the proteome. The proteomic data evidenced that the cold response involves strong repression of translation-related proteins as well as induction of amino acid metabolism, together with components related to protein folding and degradation while, the high temperature response mainly recruits amino acid metabolism. Our study provides a global and thorough insight into how growth temperature affects the yeast proteome, which can be a step forward in the comprehension and improvement of yeast thermotolerance.


Genetics ◽  
1989 ◽  
Vol 123 (4) ◽  
pp. 625-633 ◽  
Author(s):  
M B Schmid ◽  
N Kapur ◽  
D R Isaacson ◽  
P Lindroos ◽  
C Sharpe

Abstract We have isolated 440 mutants of Salmonella typhimurium that show temperature-sensitive growth on complex medium at 44 degrees. Approximately 16% of the mutations in these strains have been mapped to 17 chromosomal locations; two of these chromosomal locations seem to include several essential genes. Genetic analysis of the mutations suggests that the collection saturates the genes readily mutable to a ts lethal phenotype in S. typhimurium. Physiological characteristics of the ts lethal mutants were tested: 6% of the mutants can grow at high temperature under anaerobic conditions, 17% can grow when the medium includes 0.5 M KCl, and 9% of the mutants die after a 2-hr incubation at the nonpermissive temperature. Most ts lethal mutations in this collection probably affect genes required for growth at all temperatures (not merely during high temperature growth) since Tn10 insertions that cause a temperature-sensitive lethal phenotype are rare.


Sign in / Sign up

Export Citation Format

Share Document