Theoretical Description of the Growth and Stability of Helium Platelets in Nickel

Author(s):  
M. D’Olieslaeger ◽  
G. Knuyt ◽  
L. De Schepper ◽  
L. M. Stals
2000 ◽  
Vol 627 ◽  
Author(s):  
Prabhu R. Nott ◽  
K. Kesava Rao ◽  
L. Srinivasa Mohan

ABSTRACTThe slow flow of granular materials is often marked by the existence of narrow shear layers, adjacent to large regions that suffer little or no deformation. This behaviour, in the regime where shear stress is generated primarily by the frictional interactions between grains, has so far eluded theoretical description. In this paper, we present a rigid-plastic frictional Cosserat model that captures thin shear layers by incorporating a microscopic length scale. We treat the granular medium as a Cosserat continuum, which allows the existence of localised couple stresses and, therefore, the possibility of an asymmetric stress tensor. In addition, the local rotation is an independent field variable and is not necessarily equal to the vorticity. The angular momentum balance, which is implicitly satisfied for a classical continuum, must now be solved in conjunction with the linear momentum balances. We extend the critical state model, used in soil plasticity, for a Cosserat continuum and obtain predictions for flow in plane and cylindrical Couette devices. The velocity profile predicted by our model is in qualitative agreement with available experimental data. In addition, our model can predict scaling laws for the shear layer thickness as a function of the Couette gap, which must be verified in future experiments. Most significantly, our model can determine the velocity field in viscometric flows, which classical plasticity-based model cannot.


2005 ◽  
Vol 64 (3) ◽  
pp. 227-237
Author(s):  
A. V. Zhizhelev ◽  
S. V. Zhilinskii ◽  
A. V. Klyshevskii ◽  
S. A. Golovin

Author(s):  
Р. М. Плекан ◽  
В. Ю. Пойда ◽  
І. В. Хіміч

2013 ◽  
Vol 58 (4) ◽  
pp. 1401-1403 ◽  
Author(s):  
J.A. Bartkowska ◽  
R. Zachariasz ◽  
D. Bochenek ◽  
J. Ilczuk

Abstract In the present work, the magnetoelectric coupling coefficient, from the temperature dependences of the dielectric permittivity for the multiferroic composite was determined. The research material was ferroelectric-ferromagnetic composite on the based PZT and ferrite. We investigated the temperature dependences of the dielectric permittivity (") for the different frequency of measurement’s field. From the dielectric measurements we determined the temperature of phase transition from ferroelectric to paraelectric phase. For the theoretical description of the temperature dependence of the dielectric constant, the Hamiltonian of Alcantara, Gehring and Janssen was used. To investigate the dielectric properties of the multiferroic composite this Hamiltonian was expressed under the mean-field approximation. Based on dielectric measurements and theoretical considerations, the values of the magnetoelectric coupling coefficient were specified.


1988 ◽  
Vol 53 (4) ◽  
pp. 671-685 ◽  
Author(s):  
Oldřich Pytela ◽  
Miroslav Ludwig

A theoretical description of the effect of changed composition of mixed solvents on processes in solutions has been suggested on the basis of the proportionality between the Gibbs energy change of the process and that of the solvent due to the transition from pure components to the mixture. The additional Gibbs energy has been expressed by means of the so-called classical functions by Margules, van Laar-Wohl, and van Laar-Null. The application to 115 various processes (pK, IR, UV-VIS, NMR, log k, and others) has confirmed that the theoretical presumptions are justified, the most suitable being Margules' 4th order model which shows a statistically significant difference from the models of lower orders.


1993 ◽  
Vol 58 (8) ◽  
pp. 1855-1860 ◽  
Author(s):  
Jaroslav Nývlt ◽  
Stanislav Žáček

The dependence of the mean crystal size of the products from batch crystallizers on the batch time occasionally exhibits a maximum, which can be explained by secondary nucleation due to the attrition of crystals. A kinetic equatation of nucleation, comprising a term for crystal attrition, can be used for the theoretical description of such behaviour. A mathematical model of a batch crystallizer with crystal attrition has been verified on the calcium sulfate precipitation.


Author(s):  
Niels Engholm Henriksen ◽  
Flemming Yssing Hansen

This introductory chapter considers first the relation between molecular reaction dynamics and the major branches of physical chemistry. The concept of elementary chemical reactions at the quantized state-to-state level is discussed. The theoretical description of these reactions based on the time-dependent Schrödinger equation and the Born–Oppenheimer approximation is introduced and the resulting time-dependent Schrödinger equation describing the nuclear dynamics is discussed. The chapter concludes with a brief discussion of matter at thermal equilibrium, focusing at the Boltzmann distribution. Thus, the Boltzmann distribution for vibrational, rotational, and translational degrees of freedom is discussed and illustrated.


Author(s):  
John Campbell ◽  
Joey Huston ◽  
Frank Krauss

At the core of any theoretical description of hadron collider physics is a fixed-order perturbative treatment of a hard scattering process. This chapter is devoted to a survey of fixed-order predictions for a wide range of Standard Model processes. These range from high cross-section processes such as jet production to much more elusive reactions, such as the production of Higgs bosons. Process by process, these sections illustrate how the techniques developed in Chapter 3 are applied to more complex final states and provide a summary of the fixed-order state-of-the-art. In each case, key theoretical predictions and ideas are identified that will be the subject of a detailed comparison with data in Chapters 8 and 9.


Sign in / Sign up

Export Citation Format

Share Document