Two-Dimensional Standing Waves in Piezoelectric Plates

Author(s):  
H. F. Tiersten
2010 ◽  
Vol 645 ◽  
pp. 411-434 ◽  
Author(s):  
PETER GUBA ◽  
M. GRAE WORSTER

We study nonlinear, two-dimensional convection in a mushy layer during solidification of a binary mixture. We consider a particular limit in which the onset of oscillatory convection just precedes the onset of steady overturning convection, at a prescribed aspect ratio of convection patterns. This asymptotic limit allows us to determine nonlinear solutions analytically. The results provide a complete description of the stability of and transitions between steady and oscillatory convection as functions of the Rayleigh number and the compositional ratio. Of particular focus are the effects of the basic-state asymmetries and non-uniformity in the permeability of the mushy layer, which give rise to abrupt (hysteretic) transitions in the system. We find that the transition between travelling and standing waves, as well as that between standing waves and steady convection, can be hysteretic. The relevance of our theoretical predictions to recent experiments on directionally solidifying mushy layers is also discussed.


2010 ◽  
Vol 140 (5) ◽  
pp. 1011-1039 ◽  
Author(s):  
Hiroaki Kikuchi

AbstractWe study the orbital stability of standing waves for the Klein–Gordon–Schrödinger system in two spatial dimensions. It is proved that the standing wave is stable if the frequency is sufficiently small. To prove this, we obtain the uniqueness of ground state and investigate the spectrum of the appropriate linearized operator by using the perturbation method developed by Genoud and Stuart and Lin and Wei. Then we apply to our system the general theory of Grillakis, Shatah and Strauss.


2012 ◽  
Author(s):  
C. R. P. Courtney ◽  
C. -K. Ong ◽  
B. W. Drinkwater ◽  
P. D. Wilcox ◽  
A. Grinenko

1996 ◽  
Vol 322 ◽  
pp. 1-19 ◽  
Author(s):  
M. Ioualalen ◽  
A. J. Roberts ◽  
C. Kharif

A numerical study of the superharmonic instabilities of short-crested waves on water of finite depth is performed in order to measure their time scales. It is shown that these superharmonic instabilities can be significant-unlike the deep-water case-in parts of the parameter regime. New resonances associated with the standing wave limit are studied closely. These instabilities ‘contaminate’ most of the parameter space, excluding that near two-dimensional progressive waves; however, they are significant only near the standing wave limit. The main result is that very narrow bands of both short-crested waves ‘close’ to two-dimensional standing waves, and of well developed short-crested waves, perturbed by superharmonic instabilities, are unstable for depths shallower than approximately a non-dimensional depth d= 1; the study is performed down to depth d= 0.5 beyond which the computations do not converge sufficiently. As a corollary, the present study predicts that these very narrow sub-domains of short-crested wave fields will not be observable, although most of the short-crested wave fields will be.


Author(s):  
Kripa K. Varanasi ◽  
Samir A. Nayfeh

The damping of flexural vibration by introduction of a layer of low-density foam or powder into a structure is investigated. First, we report on experiments in which a layer of foam attached to an aluminum beam gives rise to significant damping at frequencies high enough to induce standing waves in the foam layer. Next, we provide a simple model for such vibration in which the foam is treated as a two-dimensional elastic continuum in which waves can propagate and find that the model is in good agreement with the experiments. Then the results of experiments in which aluminum beams are filled with a low-density powder are presented. The powder-filled beams exhibit behavior qualitatively like that of the foam-filled beams, but we find that the powder can be adequately modeled as an inviscid compressible fluid.


1984 ◽  
Vol 28 (04) ◽  
pp. 219-225
Author(s):  
John Nicholas Newman ◽  
Bjørn Sortland ◽  
Tor Vinje

A submerged two-dimensional rectangle in calm water with infinite depth is studied. The rectangle is oscillating in a heave motion. Negative added mass and sharp peaks in the damping and added-mass coefficients have been found when the submergence is small and the width of the shallow region on top of the rectangle is large. Resonant standing waves will occur in this area. A linear theory is developed to provide a relatively simple explanation of the occurrence of negative added mass for submerged bodies. The vertical hydrodynamic force is associated only with the flow in the shallow region, and the resulting pressure which acts on the top face of the rectangle. The results from this theory are compared with numerical results from the Frank method. The importance of the interaction effect between the top and the bottom of the body, which is neglected in the present theory, is discussed.


2011 ◽  
Vol 117-119 ◽  
pp. 624-632
Author(s):  
Lin Xu ◽  
Adrian Neild

Acoustic radiation forces can be used to collect particles within microfluidic systems. The standard way of doing this is to excite a one-dimensional standing wave between a pair of solid walls; the particles will then typically collect at the pressure nodes. Higher degrees of positioning control can be achieved by excitation of additional orthogonal one-dimensional standing waves; this usually requires further walled constraints (two-dimensional collection for example requiring a chamber rather than a channel). In this work we examine methods of exciting two-dimensional fields in a channel using a single transducer as well as the use of pressure fields which are not one-dimensional in nature and the advantages they can offer.


Sign in / Sign up

Export Citation Format

Share Document