Biotic and Abiotic Stress Signaling Mediated by Salicylic Acid

Author(s):  
Dhirendra Kumar ◽  
Danda Chapagai ◽  
Phillip Dean ◽  
Mackenzie Davenport
FEBS Letters ◽  
2008 ◽  
Vol 582 (4) ◽  
pp. 473-478 ◽  
Author(s):  
Jérémy Catinot ◽  
Antony Buchala ◽  
Eliane Abou-Mansour ◽  
Jean-Pierre Métraux

2021 ◽  
Author(s):  
Haleema Naaz ◽  
Bushra Afzal ◽  
Neha Sami ◽  
Durdana Yasin ◽  
Nida Jamil Khan ◽  
...  

Abstract Weeds are the worst category of agricultural pests as they compete with crops for water, nutrients, and light, grow faster than crops and eventually reduces the crop productivity thereby increasing the production cost. Herbicide has been used as a management tool to control weeds, by modifying their physiological activities like reducing photosynthesis, increasing protease activity and free radicals etc. The application of non-selected herbicides kills not only the weeds but also non-target organisms including the main crop. Herbicides like paraquat have been used in rice fields but its toxic effects on other organisms is at par. Salicylic acid, a plant growth regulator, is known to regulate oxidative stress in plants subjected to unfavourable environmental conditions. Given this, the present study was designed to study the effect of salicylic acid in Microchaete sp. NCCU-342 exposed to paraquat. The results obtained demonstrated that the paraquat toxicity elevated MDA and H2O2 levels, indicating free radical formation. However, supplementation of salicylic acid in the culture medium reduced the paraquat toxicity. The content of MDA and H2O2 in presence of salicylic acid was similar to the control. It enhances phenolic compound (29.07%) and phytohormones content (IAA-2.96%, SA-96.59%) and regulate the redox state of the cells. A significant change (recorded in percentage) was observed in the antioxidant enzyme activities including SOD (121.62 %), CAT (30.38 %), APX (74.38 %), GPX (127 %) and GR (141%) in presence of paraquat and after supplementation of salicylic acid. Antioxidant assay confirmed the change in antioxidants in form of phenolic compounds. Salicylic acid supplementation also enhanced the antibacterial activity of cyanobacteria, highlighting that it induces resistance against biotic stress as well as the abiotic stress. This work provides evidence for the ability of salicylic acid to alleviate the paraquat-induced toxicity, maintain redox state and resist the cell against both biotic and abiotic stress.


FEBS Letters ◽  
2011 ◽  
Vol 585 (12) ◽  
pp. 1847-1852 ◽  
Author(s):  
Cindy Fragnière ◽  
Mario Serrano ◽  
Eliane Abou-Mansour ◽  
Jean-Pierre Métraux ◽  
Floriane L'Haridon

Biomolecules ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 327
Author(s):  
Xiang-Ying Xiang ◽  
Jia Chen ◽  
Wen-Xin Xu ◽  
Jia-Rui Qiu ◽  
Li Song ◽  
...  

The resurrection plants Myrothamnus flabellifolia can survive long term severe drought and desiccation conditions and soon recover after rewatering. However, few genes related to such excellent drought tolerance and underlying molecular mechanism have been excavated. WRKY transcription factors play critical roles in biotic and abiotic stress signaling, in which WRKY70 functions as a positive regulator in biotic stress response but a negative regulator in abiotic stress signaling in Arabidopsis and some other plant species. In the present study, the functions of a dehydration-induced MfWRKY70 of M. flabellifolia participating was investigated in the model plant Arabidopsis. Our results indicated that MfWRKY70 was localized in the nucleus and could significantly increase tolerance to drought, osmotic, and salinity stresses by promoting root growth and water retention, as well as enhancing the antioxidant enzyme system and maintaining reactive oxygen species (ROS) homeostasis and membrane-lipid stability under stressful conditions. Moreover, the expression of stress-associated genes (P5CS, NCED3 and RD29A) was positively regulated in the overexpression of MfWRKY70 Arabidopsis. We proposed that MfWRKY70 may function as a positive regulator for abiotic stress responses and can be considered as a potential gene for improvement of drought and salinity tolerance in plants.


2014 ◽  
Vol 47 (3) ◽  
pp. 97-105 ◽  
Author(s):  
H. Hadi ◽  
A. Najafabadi ◽  
R. Amirnia

Abstract It has been shown that salicylic acid (SA) acts as an endogenous signal molecule responsible for inducing biotic and abiotic stress tolerance in plants. The effect of three application methods (Soil, Foliar and Priming) and four salicylic acid concentrations (0, 0.1, 0.5 and 1.0 mM) on chlorophyll a, b and total chlorophyll, carotenoids, proline, protein and soluble sugars of NaCl (4 ds/m) stressed white bean (Phaseulus vulgaris L.) was investigated. The results showed that the effect of applied concentrations and application methods on chlorophyll a and total chlorophyll, proline, protein and soluble sugars were significant. The interaction of concentrations and application methods used was significant on protein, proline and soluble sugars. According to the results, the greatest impact was belonged to the soil treatment which was not significantly different from priming. Among applied concentrations, the concentration of 0.1 and 0.5 mM were the most effective and the concentration of 1 mM was not significantly different from the control.


Agronomy ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1486
Author(s):  
Alfonso Albacete

Both melatonin and salicylic acid (SA) have been demonstrated to play multiple functions in plant physiological processes and biotic and abiotic stress responses. So far, these regulatory molecules have been separately studied despite sharing a common biosynthetic precursor and their similar physiological actions and stress regulation signals. The review published in Agronomy by Hernández-Ruiz and Arnao entitled “Relationship of melatonin and salicylic acid in biotic/abiotic stress responses” highlights the coincidences and similarities of both regulatory molecules via a thorough literature search and proposes an action model for their interaction in plant stress responses. Despite the undeniable interest and potential impact of this view, it has been focused only on coincident regulatory aspects of SA and melatonin, and the antioxidant-mediated model of interaction that has been proposed is rather speculative and needs to be mechanistically demonstrated. Nevertheless, the mentioned review leads to future research on the melatonin-SA crosstalk to improve biotic and abiotic stress tolerance, which is of utmost importance to ensure food production in the actual age of pandemics and for the upcoming climate crisis scenario.


Sign in / Sign up

Export Citation Format

Share Document