scholarly journals Oil and Gas Seeps in the Gulf of Mexico

Author(s):  
Mahlon C. Kennicutt
Keyword(s):  
2021 ◽  
pp. 1-60
Author(s):  
John Decker ◽  
Philip Teas ◽  
Daniel Orange ◽  
Bernie B. Bernard

From 2015 to 2018, TGS conducted a comprehensive multiclient oil and gas seep hunting survey in the Gulf of Mexico. The basis for identifying seeps on the sea bottom was a high-resolution Multi-Beam Echo Sounder survey, mapping approximately 880,000 km2 of the sea bottom deeper than 750 m water depth, at a bathymetric resolution of 15 m and a backscatter resolution of 5 m. We have identified more than 5000 potential oil and/or gas seeps, and of those, we cored approximately 1500 for hydrocarbon geochemical analysis. The sea bottom features best related to hydrocarbon seepage in the GoM are high backscatter circular features with or without bathymetric expression, high backscatter features with “flow” appearance, mud volcanoes, pock marks, brine pools, “popcorn” texture, faults, and anticlinal crests. We also tracked gas plumes in the water column back to the sea bottom to provide an additional criterion for hydrocarbon seepage. Cores from sea bottom targets recovered liquid oil, tar, and gas hydrates. Oil extract and gas analyses of samples from most target types produced values substantially higher than background in oil and gas.


2018 ◽  
Vol 72 ◽  
pp. 38-48 ◽  
Author(s):  
Elif Agartan ◽  
Manohar Gaddipati ◽  
Yeung Yip ◽  
Bill Savage ◽  
Chet Ozgen

2021 ◽  
Vol 40 (12) ◽  
pp. 874-874
Author(s):  
Antonio J. Velásquez ◽  
Wagner Moreira Lupinacci ◽  
Carlos Eduardo Molinares

Recent oil and gas exploration and development projects in Latin America, particularly in offshore basins, have increased the hydrocarbon resources of the region considerably. Geophysical technologies have played a significant role in the growth observed across the region, and those technologies will be crucial in the development of smart energy transition alternatives. That is what inspired this special section, which showcases a variety of technology applications, project scopes, scales, depths of investigation, and techniques, representing the diverse solutions required to tackle subsurface challenges in three major growth geographies: the Brazilian presalt, the Caribbean offshore, and the Gulf of Mexico.


1991 ◽  
Vol 28 (01) ◽  
pp. 39-45
Author(s):  
Edward E. Horton

As oil exploration and production moves farther offshore, innovative technology is required to exploit energy resources in ever deeper waters. This paper covers two areas of deepwater production: offshore Brazil and the Gulf of Mexico. The types of wells and their capacity are described as well as the alternative platform designs, both fixed and semisubmersible, being used to recover both oil and gas from depths greater than 1500 ft. The paper outlines why these deepwater regions are of interest now and describes developments that are expected in the near future.


2021 ◽  
Author(s):  
Chengcheng Gu ◽  
Hua Li ◽  
Francisco Haces-Fernandez

Abstract Offshore oil and gas platforms use gas turbine with natural gas or fuel diesel for their high demand of power. Due to the declining amount of gas available, high carbon footprint, increasing cost of fuel and inefficient operating, alternative energy options are necessary and imminent. Most offshore oil and gas platforms locate in deep water surrounded by huge amount of energetic wave resources, hence, the feasibility of supplying offshore oil facilities electricity by hybrid wave and wind energy farms based on daily energy power production instead of annual average was conducted in this project. The hybrid energy farm was modeled and validated by applying meteorological data in Gulf of Mexico area from WaveWatch III system. With the hindcast wave and wind condition data from 1979 to 2019, daily energy generation of the hybrid energy farm was estimated. Meantime, the feasibility of suppling offshore oil and gas facilities by the proposed combined hybrid farm was assessed. The project optimized the configuration of the hybrid wave and wind energy farm to satisfy offshore oil and gas platform demands and reduce the variation of power generation, so that it may be feasibility to gradually substitute the gas turbines. Through matching the local wave and wind conditions, the project was able to maximize the power output while minimize the variation within limited ocean surface area. The project addressed the advantages of hybrid wave and wind devices, as well as theoretical prospection of wave harvesting device and wind turbine combination. To validate the proposed optimization model, a case study was explored by using Vesta V90 3MW wind turbines and Pelamis 750kW wave energy converters to supply five offshore platforms in more than 45 m deep water areas. The results indicated the possibility of bringing wave energy into large commercial operation and utilization with minor investment and environmental impact.


Sign in / Sign up

Export Citation Format

Share Document