scholarly journals Structured Illumination Microscopy for the Investigation of Synaptic Structure and Function

Author(s):  
Soyon Hong ◽  
Daniel K. Wilton ◽  
Beth Stevens ◽  
Douglas S. Richardson
2018 ◽  
Author(s):  
Guillaume Jacquemet ◽  
Rafael Saup ◽  
Hellyeh Hamidi ◽  
Mitro Miihkinen ◽  
Johanna Ivaska

AbstractFilopodia are adhesive cellular protrusions specialised in the detection of extracellular matrix (ECM)-derived cues. While ECM engagement at focal adhesions is known to trigger the recruitment of hundreds of proteins (“adhesome”) to fine-tune cellular behaviour, the components of the filopodia adhesions remain undefined. Here, we performed a structured illumination microscopy-based screen to map the localisation of 80 target proteins, linked to cell adhesion and migration, within filopodia. We demonstrate preferential enrichment of several adhesion proteins to either filopodia tips, filopodia shafts, or shaft subdomains suggesting divergent, spatially restricted functions for these proteins. Moreover, proteins with phospho-inositide (PI) binding sites are particularly enriched in filopodia. This, together with the strong localisation of PI(3,4)P2 in filopodia tips, predicts critical roles for PIs in regulating filopodia ultra-structure and function. Our mapping further reveals that filopodia adhesions consist of a unique set of proteins, the filopodome, that are distinct from classical nascent adhesions, focal adhesions and fibrillar adhesions. Using live imaging, we observe that filopodia adhesions can give rise to nascent adhesions, which, in turn, form focal adhesions. Finally, we demonstrate that p130Cas (BCAR1) is recruited to filopodia tips via its CCHD domain and acts as a mechanosensitive regulator of filopodia stability.


2020 ◽  
Vol 6 (19) ◽  
pp. eaaz3870 ◽  
Author(s):  
Ziwei Li ◽  
Qinrong Zhang ◽  
Shih-Wei Chou ◽  
Zachary Newman ◽  
Raphaël Turcotte ◽  
...  

Optical microscopy, owing to its noninvasiveness and subcellular resolution, enables in vivo visualization of neuronal structure and function in the physiological context. Optical-sectioning structured illumination microscopy (OS-SIM) is a widefield fluorescence imaging technique that uses structured illumination patterns to encode in-focus structures and optically sections 3D samples. However, its application to in vivo imaging has been limited. In this study, we optimized OS-SIM for in vivo neural imaging. We modified OS-SIM reconstruction algorithms to improve signal-to-noise ratio and correct motion-induced artifacts in live samples. Incorporating an adaptive optics (AO) module to OS-SIM, we found that correcting sample-induced optical aberrations was essential for achieving accurate structural and functional characterizations in vivo. With AO OS-SIM, we demonstrated fast, high-resolution in vivo imaging with optical sectioning for structural imaging of mouse cortical neurons and zebrafish larval motor neurons, and functional imaging of quantal synaptic transmission at Drosophila larval neuromuscular junctions.


2020 ◽  
Vol 40 (10) ◽  
Author(s):  
Zhuang Wei ◽  
Tae-Sung Kim ◽  
Jong Il Ahn ◽  
Lingjun Meng ◽  
Yaozong Chen ◽  
...  

ABSTRACT Cep57 has been characterized as a component of a pericentriolar complex containing Cep63 and Cep152. Interestingly, Cep63 and Cep152 self-assemble into a pericentriolar cylindrical architecture, and this event is critical for the orderly recruitment of Plk4, a key regulator of centriole duplication. However, the way in which Cep57 interacts with the Cep63-Cep152 complex and contributes to the structure and function of Cep63-Cep152 self-assembly remains unknown. We demonstrate that Cep57 interacts with Cep63 through N-terminal motifs and associates with Cep152 via Cep63. Three-dimensional structured illumination microscopy (3D-SIM) analyses suggested that the Cep57-Cep63-Cep152 complex is concentrically arranged around a centriole in a Cep57-in and Cep152-out manner. Cep57 mutant cells defective in Cep63 binding exhibited improper Cep63 and Cep152 localization and impaired Sas6 recruitment for procentriole assembly, proving the significance of the Cep57-Cep63 interaction. Intriguingly, Cep63 fused to a microtubule (MT)-binding domain of Cep57 functioned in concert with Cep152 to assemble around stabilized MTs in vitro. Thus, Cep57 plays a key role in architecting the Cep63-Cep152 assembly around centriolar MTs and promoting centriole biogenesis. This study may offer a platform to investigate how the organization and function of the pericentriolar architecture are altered by disease-associated mutations found in the Cep57-Cep63-Cep152 complex.


2010 ◽  
Vol 43 (4) ◽  
pp. 341-352 ◽  
Author(s):  
Charu Misra ◽  
Sophie Restituito ◽  
Jainne Ferreira ◽  
Gerald A. Rameau ◽  
Jie Fu ◽  
...  

2018 ◽  
Vol 84 (7) ◽  
pp. 478-487 ◽  
Author(s):  
Kaichuan Zhu ◽  
Finn Peters ◽  
Severin Filser ◽  
Jochen Herms

2010 ◽  
Vol 38 (2) ◽  
pp. 443-444 ◽  
Author(s):  
Nils Brose ◽  
Vincent O'Connor ◽  
Paul Skehel

Synaptopathy is an increasingly popular term used to define key features of neurodegenerative and psychiatric disease. It implies that disruptions in synaptic structure and function are potentially the major determinant of such brain diseases. The Synaptopathies: Dysfunction of Synaptic Function Biochemical Society Focused Meeting brought together several invited speakers, supplemented with short communications from young scientists, who addressed this possibility. The talks spanned the full gamut of approaches that brought molecular, cellular, systems and whole-animal experimentation together to address how fundamental synaptic biology was increasingly informing on dysfunction in disease. The disease and models thereof discussed included Alzheimer's disease, prions, Huntington's disease, Parkinson's disease, schizophrenia and autism. The audience were asked to reflect on whether synaptopathy, although attractive and conceptually useful, provided a significant explanation as the cause of these major diseases. The breadth of the meeting reinforced the complexity of these brain diseases, supported the significance of synaptic dysfunction in disease, but left open the issue as to whether the prime cause of these disorders could be resolved as simple synaptic dysfunction. Thus, despite revealing a value of synaptopathy, further investigation will be required to reveal its balance in the cause and effect in each of the major brain diseases.


Sign in / Sign up

Export Citation Format

Share Document