Retroviral Transduction and Reporter Assay: Transcription Factor Cooperation in Th9 Cell Development

Author(s):  
Rukhsana Jabeen
2019 ◽  
Vol 51 (11) ◽  
pp. 1-12
Author(s):  
Woo Ho Lee ◽  
Sung Woong Jang ◽  
Hyeong Su Kim ◽  
So Hee Kim ◽  
Jung In Heo ◽  
...  

AbstractTh9 cells preferentially produce IL-9 and participate in allergic responses and asthma. Differentiation of Th9 cells is induced by IL-4 and TGF-β, and then the cells are amplified by OX40 signals. The transcription factors PU.1, IRF4, and BATF are required for Th9 differentiation. BATF3 is an AP-1 family transcription factor that is highly homologous to BATF; however, its role in Th9 cells is poorly defined. Here, we show that OX40 signaling induced the expression of Batf3 and that its overexpression in the presence or absence of OX40 signaling increased the expression of IL-9 in Th9 cells. BATF3 physically interacted with IRF4 and was bound to the Il9 locus. A transient reporter assay revealed that the BATF3–IRF4 complex induced Il9 promoter activity. BATF3 rescued Il9 expression and restored the capacity to induce the airway inflammation in Batf KO Th9 cells. Thus, BATF3 itself is sufficient for the induction of Th9 cell differentiation and can substitute for BATF during Th9 cell differentiation.


2002 ◽  
Vol 6 (4) ◽  
pp. 491-495 ◽  
Author(s):  
Gerhard Behre ◽  
Venkateshwar A Reddy ◽  
Daniel G Tenen ◽  
Wolfgang Hiddemann ◽  
Abdul A Peer Zada ◽  
...  

2017 ◽  
Vol 53 ◽  
pp. S92
Author(s):  
Miroslava Kardosova ◽  
Lucie Potuckova ◽  
Ivana Halova ◽  
Polina Zjablovskaja ◽  
Lubica Draberova ◽  
...  

2005 ◽  
Vol 201 (8) ◽  
pp. 1197-1203 ◽  
Author(s):  
Kazu Kikuchi ◽  
Anne Y. Lai ◽  
Chia-Lin Hsu ◽  
Motonari Kondo

Cytokine receptor signals have been suggested to stimulate cell differentiation during hemato/lymphopoiesis. Such action, however, has not been clearly demonstrated. Here, we show that adult B cell development in IL-7−/− and IL-7Rα2/− mice is arrested at the pre–pro-B cell stage due to insufficient expression of the B cell–specific transcription factor EBF and its target genes, which form a transcription factor network in determining B lineage specification. EBF expression is restored in IL-7−/− pre–pro-B cells upon IL-7 stimulation or in IL-7Rα−/− pre–pro-B cells by activation of STAT5, a major signaling molecule downstream of the IL-7R signaling pathway. Furthermore, enforced EBF expression partially rescues B cell development in IL-7Rα−/− mice. Thus, IL-7 receptor signaling is a participant in the formation of the transcription factor network during B lymphopoiesis by up-regulating EBF, allowing stage transition from the pre–pro-B to further maturational stages.


Sign in / Sign up

Export Citation Format

Share Document