scholarly journals Screening DNA Repeat Tracts of Phase Variable Genes by Fragment Analysis

Author(s):  
Freda E. -C. Jen ◽  
Kate L. Seib ◽  
Aimee Tan
2013 ◽  
Vol 208 (5) ◽  
pp. 720-727 ◽  
Author(s):  
Jessica Poole ◽  
Eric Foster ◽  
Kathryn Chaloner ◽  
Jason Hunt ◽  
Michael P. Jennings ◽  
...  

mBio ◽  
2021 ◽  
Author(s):  
Shouji Yamamoto ◽  
Sunao Iyoda ◽  
Makoto Ohnishi

Campylobacter jejuni is the leading bacterial cause of foodborne gastroenteritis in developed countries and occasionally progresses to the autoimmune disease Guillain-Barré syndrome. A relatively large number of hypermutable simple sequence repeat (SSR) tracts in the C. jejuni genome markedly decreases its phenotypic stability through reversible changes in the ON or OFF expression states of the genes in which they reside, a phenomenon called phase variation.


2019 ◽  
Vol 47 (4) ◽  
pp. 1131-1141 ◽  
Author(s):  
Zachary N. Phillips ◽  
Greg Tram ◽  
Kate L. Seib ◽  
John M. Atack

Abstract Phase-variation of genes is defined as the rapid and reversible switching of expression — either ON-OFF switching or the expression of multiple allelic variants. Switching of expression can be achieved by a number of different mechanisms. Phase-variable genes typically encode bacterial surface structures, such as adhesins, pili, and lipooligosaccharide, and provide an extra contingency strategy in small-genome pathogens that may lack the plethora of ‘sense-and-respond’ gene regulation systems found in other organisms. Many bacterial pathogens also encode phase-variable DNA methyltransferases that control the expression of multiple genes in systems called phasevarions (phase-variable regulons). The presence of phase-variable genes allows a population of bacteria to generate a number of phenotypic variants, some of which may be better suited to either colonising certain host niches, surviving a particular environmental condition and/or evading an immune response. The presence of phase-variable genes complicates the determination of an organism's stably expressed antigenic repertoire; many phase-variable genes are highly immunogenic, and so would be ideal vaccine candidates, but unstable expression due to phase-variation may allow vaccine escape. This review will summarise our current understanding of phase-variable genes that switch expression by a variety of mechanisms, and describe their role in disease and pathobiology.


2015 ◽  
Vol 25 (2) ◽  
pp. 1-25 ◽  
Author(s):  
Ovidiu Pârvu ◽  
David Gilbert ◽  
Monika Heiner ◽  
Fei Liu ◽  
Nigel Saunders ◽  
...  

Microbiology ◽  
2017 ◽  
Vol 163 (6) ◽  
pp. 911-919 ◽  
Author(s):  
Jack Aidley ◽  
Martine C. Holst Sørensen ◽  
Christopher D. Bayliss ◽  
Lone Brøndsted

2021 ◽  
Vol 12 ◽  
Author(s):  
Caroline Cayrou ◽  
Natalie A. Barratt ◽  
Julian M. Ketley ◽  
Christopher D. Bayliss

Phase variation (PV) is a phenomenon common to a variety of bacterial species for niche adaption and survival in challenging environments. Among Campylobacter species, PV depends on the presence of intergenic and intragenic hypermutable G/C homopolymeric tracts. The presence of phase-variable genes is of especial interest for species that cause foodborne or zoonotic infections in humans. PV influences the formation and the structure of the lipooligosaccharide, flagella, and capsule in Campylobacter species. PV of components of these molecules is potentially important during invasion of host tissues, spread within hosts and transmission between hosts. Motility is a critical phenotype that is potentially modulated by PV. Variation in the status of the phase-variable genes has been observed to occur during colonization in chickens and mouse infection models. Interestingly, PV is also involved in bacterial survival of attack by bacteriophages even during chicken colonization. This review aims to explore and discuss observations of PV during model and natural infections by Campylobacter species and how PV may affect strategies for fighting infections by this foodborne pathogen.


Microbiology ◽  
2004 ◽  
Vol 150 (4) ◽  
pp. 817-830 ◽  
Author(s):  
Laurence Salaün ◽  
Bodo Linz ◽  
Sebastian Suerbaum ◽  
Nigel J. Saunders

Phase variation is a common mechanism used by pathogenic bacteria to generate intra-strain diversity that is important in niche adaptation and is strongly associated with virulence determinants. Previous analyses of the complete sequences of the Helicobacter pylori strains 26695 and J99 have identified 36 putative phase-variable genes among the two genomes through their association with homopolymeric tracts and dinucleotide repeats. Here a comparative analysis of the two genomes is reported and an updated and expanded list of 46 candidate phase-variable genes in H. pylori is described. These have been systematically investigated by PCR and sequencing for the presence of the genes, and the presence and variability in length of the repeats in strains 26695 and J99 and in a collection of unrelated H. pylori strains representative of the main global subdivisions recently suggested. This provides supportive evidence for the phase variability of 30 of the 46 candidates. Other differences in this subset of genes were observed (i) in the repeats, which can be present or absent among the strains, or stabilized in different strains and (ii) in the gene-complements of the strains. Differences between genes were not consistently correlated with the geographic population distribution of the strains. This study extends and provides new evidence for variation of this type in H. pylori, and of the high degree of diversity of the repertoire of genes which display phase-variable switching within individual strains.


Microbiology ◽  
2001 ◽  
Vol 147 (8) ◽  
pp. 2321-2332 ◽  
Author(s):  
Lori A. S Snyder ◽  
Sarah A Butcher ◽  
Nigel J Saunders

Sign in / Sign up

Export Citation Format

Share Document