commensal neisseria
Recently Published Documents


TOTAL DOCUMENTS

55
(FIVE YEARS 22)

H-INDEX

17
(FIVE YEARS 3)

Antibiotics ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 100
Author(s):  
Jolein Gyonne Elise Laumen ◽  
Saïd Abdellati ◽  
Christophe Van Dijck ◽  
Delphine Martiny ◽  
Irith De Baetselier ◽  
...  

Commensal Neisseria provide a reservoir of resistance genes that can be transferred to the pathogens Neisseria gonorrhoeae and N. meningitidis in the human oropharynx. Surveillance programs are thus needed to monitor resistance in oropharyngeal commensal Neisseria, but currently the isolation and antimicrobial susceptibility testing of these commensals is laborious, complex and expensive. In addition, the posterior oropharyngeal/tonsillar swab, which is commonly used to sample oropharyngeal Neisseria, is poorly tolerated by many individuals. We evaluated an alternative non-invasive method to isolate oropharyngeal commensal Neisseria and to detect decreased susceptibility to azithromycin using selective media (LBVT.SNR) with and without azithromycin (2 µg/mL). In this pilot study, we compared paired posterior oropharyngeal/tonsillar swabs and oral rinse-and-gargle samples from 10 participants and demonstrated that a similar Neisseria species diversity and number of colonies were isolated from both sample types. Moreover, the proportion of Neisseria colonies that had a decreased susceptibility to azithromycin was similar in the rinse samples compared to the swabs. This pilot study has produced encouraging data that a simple protocol of oral rinse-and-gargle and culture on plates selective for commensal Neisseria with and without a target antimicrobial can be used as a surveillance tool to monitor antimicrobial susceptibility in commensal oropharyngeal Neisseria. Larger studies are required to validate these findings.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Jolein Gyonne Elise Laumen ◽  
Christophe Van Dijck ◽  
Saïd Abdellati ◽  
Irith De Baetselier ◽  
Gabriela Serrano ◽  
...  

AbstractNon-pathogenic Neisseria are a reservoir of antimicrobial resistance genes for pathogenic Neisseria meningitidis and Neisseria gonorrhoeae. Men who have sex with men (MSM) are at risk of co-colonization with resistant non-pathogenic and pathogenic Neisseria. We assessed if the antimicrobial susceptibility of non-pathogenic Neisseria among MSM differs from a general population and if antimicrobial exposure impacts susceptibility. We recruited 96 participants at our center in Belgium: 32 employees, 32 MSM who did not use antibiotics in the previous 6 months, and 32 MSM who did. Oropharyngeal Neisseria were cultured and identified with MALDI-TOF–MS. Minimum inhibitory concentrations for azithromycin, ceftriaxone and ciprofloxacin were determined using E-tests® and compared between groups with non-parametric tests. Non-pathogenic Neisseria from employees as well as MSM were remarkably resistant. Those from MSM were significantly less susceptible than employees to azithromycin and ciprofloxacin (p < 0.0001, p < 0.001), but not ceftriaxone (p = 0.3). Susceptibility did not differ significantly according to recent antimicrobial exposure in MSM. Surveilling antimicrobial susceptibility of non-pathogenic Neisseria may be a sensitive way to assess impact of antimicrobial exposure in a population. The high levels of antimicrobial resistance in this survey indicate that novel resistance determinants may be readily available for future transfer from non-pathogenic to pathogenic Neisseria.


2021 ◽  
Author(s):  
Giulia Orazi ◽  
Alan J Collins ◽  
Rachel J Whitaker

The genus Neisseria includes two pathogenic species, N. gonorrhoeae and N. meningitidis, and numerous commensal species. Neisseria species frequently exchange DNA with one other, primarily via transformation and homologous recombination, and via multiple types of mobile genetic elements (MGEs). Few Neisseria bacteriophages (phages) have been identified and their impact on bacterial physiology is poorly understood. Furthermore, little is known about the range of species that Neisseria phages can infect. In this study, we used three virus prediction tools to scan 248 genomes of 21 different Neisseria species and identified 1302 unique predicted prophages. Using comparative genomics, we found that many predictions are dissimilar from other prophages and MGEs previously described to infect Neisseria species. We also identified similar predicted prophages in genomes of different Neisseria species. Additionally, we examined CRISPR-Cas targeting of each Neisseria genome and predicted prophage. While CRISPR targeting of chromosomal DNA appears to be common among several Neisseria species, we found that 20% of the prophages we predicted are targeted significantly more than the rest of the bacterial genome in which they were identified (i.e., backbone). Furthermore, many predicted prophages are targeted by CRISPR spacers encoded by other species. We then used these results to infer additional host species of known Neisseria prophages and predictions that are highly targeted relative to the backbone. Together, our results suggest that we have identified novel Neisseria prophages, several of which may infect multiple Neisseria species. These findings have important implications for understanding horizontal gene transfer between members of this genus. IMPORTANCE: Drug-resistant N. gonorrhoeae is a major threat to human health. Commensal Neisseria species are thought to serve as reservoirs of antibiotic resistance and virulence genes for the pathogenic species N. gonorrhoeae and N. meningitidis. Therefore, it is important to understand both the diversity of mobile genetic elements (MGEs) that can mediate horizontal gene transfer within this genus, and the breadth of species these MGEs can infect. In particular, few bacteriophages (phages) have been identified and characterized in Neisseria species. In this study, we identified a large number of candidate phages integrated within the genomes of commensal and pathogenic Neisseria species, many of which appear to be novel phages. Importantly, we discovered extensive interspecies targeting of predicted phages by Neisseria CRISPR-Cas systems, which may reflect their movement between different species. Uncovering the diversity and host range of phages is essential for understanding how they influence the evolution of their microbial hosts.


Author(s):  
Said Abdellati ◽  
Jolein Laumen ◽  
Natalia Gonzalez ◽  
Sheeba Manoharan-Basil ◽  
Christophe Van Dijck ◽  
...  

Antibiotic-sparing treatments are required to prevent the further emergence of anti-microbial resistance in Neisseria gonorrhoeae. Commensal Neisseria species have previously been found to inhibit the growth of pathogenic Neisseria species. For example, a previous study found that 3 out of 5 historical isolates of Neisseria mucosa could inhibit the growth of N. gonorrhoeae. In this study, we used agar overlay assays to assess if 24 circulating and historical isolates of Neisseria mucosa could inhibit the growth of 28 circulating and historical isolates of N. gonorrhoeae. Although pitting around each colony of N. mucosa created an optical illusion of decreased growth of N. gonorrhoeae, we found no evidence of inhibition (n=24). In contrast, positive controls of Streptococcus pneumoniae and Escherichia coli demonstrated a strong inhibitory effect against the growth of N. gonorrhoeae.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Rafael Custodio ◽  
Rhian M Ford ◽  
Cara J Ellison ◽  
Guangyu Liu ◽  
Gerda Mickute ◽  
...  

Type VI Secretion Systems (T6SSs) are widespread in bacteria and can dictate the development and organisation of polymicrobial ecosystems by mediating contact dependent killing. In Neisseria species, including Neisseria cinerea a commensal of the human respiratory tract, interbacterial contacts are mediated by Type four pili (Tfp) which promote formation of aggregates and govern the spatial dynamics of growing Neisseria microcolonies. Here, we show that N. cinerea expresses a plasmid-encoded T6SS that is active and can limit growth of related pathogens. We explored the impact of Tfp on N. cinerea T6SS-dependent killing within a colony and show that pilus expression by a prey strain enhances susceptibility to T6SS compared to a non-piliated prey, by preventing segregation from a T6SS-wielding attacker. Our findings have important implications for understanding how spatial constraints during contact-dependent antagonism can shape the evolution of microbial communities.


mSphere ◽  
2021 ◽  
Author(s):  
Stephen A. Clark ◽  
Steve Gray ◽  
Adam Finn ◽  
Ray Borrow

This study highlights the need for further work to accurately determine the pharyngeal carriage prevalence of Neisseria commensal bacteria (e.g., N. cinerea and N. polysaccharea ) among the general population. Previous studies have clearly demonstrated the suppressive effect these commensal species can have on meningococcal colonization, and so the carriage prevalence of these species could be an important factor in the spread of meningococci through the population.


Antibiotics ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 515
Author(s):  
Chris Kenyon ◽  
Jolein Laumen ◽  
Sheeba Manoharan-Basil

The development of new gonorrhoea treatment guidelines typically considers the resistance-inducing effect of the treatment only on Neisseria gonorrhoeae. Antimicrobial resistance in N. gonorrhoeae has, however, frequently first emerged in commensal Neisseria species and then been passed on to N. gonorrhoeae via transformation. This creates the rationale for considering the effect of gonococcal therapies on resistance in commensal Neisseria. We illustrate the benefits of this pan-Neisseria strategy by evaluating three contemporary treatment options for N. gonorrhoeae—ceftriaxone plus azithromycin, monotherapy with ceftriaxone and zoliflodacin.


Pathogens ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 384
Author(s):  
Tessa de Block ◽  
Jolein Gyonne Elise Laumen ◽  
Christophe Van Dijck ◽  
Said Abdellati ◽  
Irith De Baetselier ◽  
...  

In this study, we characterized all oropharyngeal and anorectal isolates of Neisseria spp. in a cohort of men who have sex with men. This resulted in a panel of pathogenic Neisseria (N. gonorrhoeae [n = 5] and N. meningitidis [n = 5]) and nonpathogenic Neisseria (N. subflava [n = 11], N. mucosa [n = 3] and N. oralis [n = 2]). A high proportion of strains in this panel were resistant to azithromycin (18/26) and ceftriaxone (3/26). Whole genome sequencing (WGS) of these strains identified numerous mutations that are known to confer reduced susceptibility to azithromycin and ceftriaxone in N. gonorrhoeae. The presence or absence of these known mutations did not explain the high level resistance to azithromycin (>256 mg/L) in the nonpathogenic isolates (8/16). After screening for antimicrobial resistance (AMR) genes, we found a ribosomal protection protein, Msr(D), in these highly azithromycin resistant nonpathogenic strains. The complete integration site originated from Streptococcus pneumoniae and is associated with high level resistance to azithromycin in many other bacterial species. This novel AMR resistance mechanism to azithromycin in nonpathogenic Neisseria could be a public health concern if it were to be transmitted to pathogenic Neisseria. This study demonstrates the utility of WGS-based surveillance of nonpathogenic Neisseria.


Author(s):  
Maira Goytia ◽  
Symone T Thompson ◽  
Skylar VL Jordan ◽  
Kacey A King

Pathogenic Neisseria gonorrhoeae causes the sexually-transmitted infection gonorrhea. N. gonorrhoeae has evolved high levels of antimicrobial resistance (AR) leading to therapeutic failures even in dual-therapy treatment with azithromycin and ceftriaxone. AR mechanisms can be acquired by genetic transfer from closely related species, such as naturally-competent commensal Neisseria species. At present, little is known about the antimicrobial resistance profiles of commensal Neisseria. Here, we characterized the phenotypic resistance profile of four commensal Neisseria species (N. lactamica, N. cinerea, N. mucosa, and N. elongata) against 10 commonly used antibiotics, and compared their profiles to 4 N. gonorrhoeae strains, using disk diffusion and minimal inhibitory concentration assays. Overall, we observed that 3 of the 4 commensals were more resistant to several antibiotics than pathogenic N. gonorrhoeae strains. Next, we compared the penicillin-binding-protein 2 (PBP2) sequences between commensal and N. gonorrhoeae strains. We found mutations in PBP2 known to confer resistance in N. gonorrhoeae also present in commensal Neisseria sequences. Our results suggest that commensal Neisseria have unexplored antibiotic resistance gene pools that may be exchanged with pathogenic N. gonorrhoeae, possibly impairing drug development and clinical treatment.


Sign in / Sign up

Export Citation Format

Share Document