Subcellular Localization of ESCRT-II in the Nematode C. elegans by Correlative Light Electron Microscopy

Author(s):  
Céline Largeau ◽  
Emmanuel Culetto ◽  
Renaud Legouis
eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Inna V Nechipurenko ◽  
Cristina Berciu ◽  
Piali Sengupta ◽  
Daniela Nicastro

The primary cilium is nucleated by the mother centriole-derived basal body (BB) via as yet poorly characterized mechanisms. BBs have been reported to degenerate following ciliogenesis in the C. elegans embryo, although neither BB architecture nor early ciliogenesis steps have been described in this organism. In a previous study (Doroquez et al., 2014), we described the three-dimensional morphologies of sensory neuron cilia in adult C. elegans hermaphrodites at high resolution. Here, we use serial section electron microscopy and tomography of staged C. elegans embryos to demonstrate that BBs remodel to support ciliogenesis in a subset of sensory neurons. We show that centriolar singlet microtubules are converted into BB doublets which subsequently grow asynchronously to template the ciliary axoneme, visualize degeneration of the centriole core, and define the developmental stage at which the transition zone is established. Our work provides a framework for future investigations into the mechanisms underlying BB remodeling.


Neuron ◽  
2002 ◽  
Vol 35 (2) ◽  
pp. 307-318 ◽  
Author(s):  
David M. Tobin ◽  
David M. Madsen ◽  
Amanda Kahn-Kirby ◽  
Erin L. Peckol ◽  
Gary Moulder ◽  
...  

2016 ◽  
Author(s):  
Maria A. Lim ◽  
Jyothsna Chitturi ◽  
Valeriya Laskova ◽  
Jun Meng ◽  
Daniel Findeis ◽  
...  

AbstractNeuromodulators shape neural circuit dynamics. Combining electron microscopy, genetics, transcriptome profiling, calcium imaging, and optogenetics, we discovered a peptidergic neuron that modulates C. elegans motor circuit dynamics. The Six/SO-family homeobox transcription factor UNC-39 governs lineage-specific neurogenesis to give rise to a neuron RID. RID bears the anatomic hallmarks of a specialized endocrine neuron: it harbors near-exclusive dense core vesicles that cluster periodically along the axon, and expresses multiple neuropeptides, including the FMRF-amide-related FLP-14. RID activity increases during forward movement. Ablating RID reduces the sustainability of forward movement, a phenotype partially recapitulated by removing FLP-14. Optogenetic depolarization of RID prolongs forward movement, an effect reduced in the absence of FLP-14. Together, these results establish the role of a neuroendocrine cell RID in sustaining a specific behavioral state in C. elegans.


Virology ◽  
2005 ◽  
Vol 340 (1) ◽  
pp. 155-166 ◽  
Author(s):  
M. Erhardt ◽  
G. Vetter ◽  
D. Gilmer ◽  
S. Bouzoubaa ◽  
K. Richards ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document