combinatorial expression
Recently Published Documents


TOTAL DOCUMENTS

98
(FIVE YEARS 13)

H-INDEX

24
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Liqun Luo ◽  
Qijing Xie ◽  
Jiefu Li ◽  
Hongjie Li ◽  
Namrata Udeshi ◽  
...  

Abstract Transcription factors are central commanders specifying cell fate, morphology, and physiology while cell-surface proteins execute these commands through interaction with cellular environment. In developing neurons, it is presumed that transcription factors control wiring specificity through regulation of cell-surface protein expression. However, the number and identity of cell-surface protein(s) a transcription factor regulates remain largely unclear1,2. Also unknown is whether a transcription factor regulates the same or different cell-surface proteins in different neuron types to specify their connectivity. Here we use a lineage-defining transcription factor, Acj6 (ref. 3), to investigate how it controls precise dendrite targeting of Drosophila olfactory projection neurons (PNs). Quantitative cell-surface proteomic profiling of wild-type and acj6 mutant PNs in intact developing brains and a proteome-informed genetic screen identified PN surface proteins that execute Acj6-regulated wiring decisions. These include canonical cell adhesion proteins and proteins previously not associated with wiring, such as the mechanosensitive ion channel Piezo—whose channel activity is dispensable for its wiring function. Comprehensive genetic analyses revealed that Acj6 employs unique sets of cell-surface proteins in different PN types for dendrite targeting. Combinatorial expression of Acj6 wiring executors rescued acj6 mutant phenotypes with higher efficacy and breadth than expression of individual executors. Thus, a key transcription factor controls wiring specificity of different neuron types by specifying distinct combinatorial expression of cell-surface executors.


2021 ◽  
Author(s):  
Qijing Xie ◽  
Jiefu Li ◽  
Hongjie Li ◽  
Namrata D Udeshi ◽  
Tanya Svinkina ◽  
...  

Transcription factors are central commanders specifying cell fate, morphology, and physiology while cell-surface proteins execute these commands through interaction with cellular environment. In developing neurons, it is presumed that transcription factors control wiring specificity through regulation of cell-surface protein expression. However, the number and identity of cell-surface protein(s) a transcription factor regulates remain largely unclear1,2. Also unknown is whether a transcription factor regulates the same or different cell-surface proteins in different neuron types to specify their connectivity. Here we use a lineage-defining transcription factor, Acj6 (ref. 3), to investigate how it controls precise dendrite targeting of Drosophila olfactory projection neurons (PNs). Quantitative cell-surface proteomic profiling of wild-type and acj6 mutant PNs in intact developing brains and a proteome-informed genetic screen identified PN surface proteins that execute Acj6-regulated wiring decisions. These include canonical cell adhesion proteins and proteins previously not associated with wiring, such as the mechanosensitive ion channel Piezo–whose channel activity is dispensable for its wiring function. Comprehensive genetic analyses revealed that Acj6 employs unique sets of cell-surface proteins in different PN types for dendrite targeting. Combinatorial expression of Acj6 wiring executors rescued acj6 mutant phenotypes with higher efficacy and breadth than expression of individual executors. Thus, a key transcription factor controls wiring specificity of different neuron types by specifying distinct combinatorial expression of cell-surface executors.


2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Bartomeu Fiol ◽  
Alan Rios Fukelman

Abstract We derive the planar limit of 2- and 3-point functions of single-trace chiral primary operators of $$ \mathcal{N} $$ N = 2 SQCD on S4, to all orders in the ’t Hooft coupling. In order to do so, we first obtain a combinatorial expression for the planar free energy of a hermitian matrix model with an infinite number of arbitrary single and double trace terms in the potential; this solution might have applications in many other contexts. We then use these results to evaluate the analogous planar correlation functions on ℝ4. Specifically, we compute all the terms with a single value of the ζ function for a few planar 2- and 3-point functions, and conjecture general formulas for these terms for all 2- and 3-point functions on ℝ4.


BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Èlia Benito-Gutiérrez ◽  
Giacomo Gattoni ◽  
Manuel Stemmer ◽  
Silvia D. Rohr ◽  
Laura N. Schuhmacher ◽  
...  

Abstract Background The evolutionary origin of the telencephalon, the most anterior part of the vertebrate brain, remains obscure. Since no obvious counterpart to the telencephalon has yet been identified in invertebrate chordates, it is difficult to trace telencephalic origins. One way to identify homologous brain parts between distantly related animal groups is to focus on the combinatorial expression of conserved regionalisation genes that specify brain regions. Results Here, we report the combined expression of conserved transcription factors known to specify the telencephalon in the vertebrates in the chordate amphioxus. Focusing on adult specimens, we detect specific co-expression of these factors in the dorsal part of the anterior brain vesicle, which we refer to as Pars anterodorsalis (PAD). As in vertebrates, expression of the transcription factors FoxG1, Emx and Lhx2/9 overlaps that of Pax4/6 dorsally and of Nkx2.1 ventrally, where we also detect expression of the Hedgehog ligand. This specific pattern of co-expression is not observed prior to metamorphosis. Similar to the vertebrate telencephalon, the amphioxus PAD is characterised by the presence of GABAergic neurons and dorsal accumulations of glutamatergic as well as dopaminergic neurons. We also observe sustained proliferation of neuronal progenitors at the ventricular zone of the amphioxus brain vesicle, as observed in the vertebrate brain. Conclusions Our findings suggest that the PAD in the adult amphioxus brain vesicle and the vertebrate telencephalon evolved from the same brain precursor region in ancestral chordates, which would imply homology of these structures. Our comparative data also indicate that this ancestral brain already contained GABA-, glutamatergic and dopaminergic neurons, as is characteristic for the olfactory bulb of the vertebrate telencephalon. We further speculate that the telencephalon might have evolved in vertebrates via a heterochronic shift in developmental timing.


2021 ◽  
Author(s):  
Silvia Acosta Guitierrez ◽  
Joseph Buckley ◽  
Giuseppe Battaglia

Long and complex chains of sugars, called glycans, often coat both the cell and protein surface. Glycans both modulate specific interactions and protect cells. On the cell surface, these sugars form a cushion known as the glycocalyx. Here, we show that Heparan Sulfate (HS) chains - part of the glycocalyx - and other glycans - expressed on the surface of both host and virus proteins - have a critical role in modulating both attractive and repulsive potentials during viral infection. We analyse the SARS-CoV-2 virus, modelling its spike proteins binding to HS chains and two key entry receptors, ACE2 and TMPRSS2. We include the volume exclusion effect imposed on the HS chains impose during virus insertion into glycocalyx and the steric repulsion caused by changes in the conformation of the ACE2 glycans involved in binding to the spike. We then combine all these interactions, showing that the interplay of all these components is critical to the behaviour of the virus. We show that the virus tropism depends on the combinatorial expression of both HS chains and receptors. Finally, we demonstrate that when both HS chains and entry receptors express at high density, steric effects dominate the interaction, preventing infection.


2021 ◽  
Vol 9 ◽  
Author(s):  
Maliheh Esfahanian ◽  
Tara J. Nazarenus ◽  
Meghan M. Freund ◽  
Gary McIntosh ◽  
Winthrop B. Phippen ◽  
...  

Thlaspi arvense L. (pennycress) is a cold-tolerant Brassicaceae that produces large amounts of seeds rich in triacylglycerols and protein, making it an attractive target for domestication into an offseason oilseed cash cover crop. Pennycress is easily genetically transformed, enabling synthetic biology approaches to tailor oil properties for specific biofuel and industrial applications. To test the feasibility in pennycress of producing TAGs and acetyl-TAGs rich in medium-chain fatty acids (MCFAs; C6–C14) for industrial, biojet fuel and improved biodiesel applications, we generated transgenic lines with seed-specific expression of unique acyltransferase (LPAT and diacylglycerol acyltransferase) genes and thioesterase (FatB) genes isolated from Cuphea viscosissima, Cuphea avigera var. pulcherrima, Cuphea hookeriana, Coco nucifera, and Umbellularia californica. Wild-type pennycress seed TAGs accumulate no fatty acids shorter than 16C and less than 5 mol percent C16 as palmitic acid (16:0). Co-expressing UcFatB and CnLPAT produced up to 17 mol% accumulation of lauric acid (12:0) in seed TAGs, whereas CvFatB1 CvLPAT2 CpDGAT1 combinatorial expression produced up to 27 mol% medium chain FAs Medium Chain Fatty Acids mostly in the form of capric acid (10:0). CpFatB2 ChFatB2 combinatorial expression predominantly produced, in equal parts, up to 28 mol% myristic acid (14:0) and palmitic acid. Genetically crossing the combinatorial constructs into a fatty acid elongation1 (fae1) mutant that produced no 22:1 erucic acid, and with an Euonymus alatus diacylglycerol acetyltransferase (EaDAcT)-expressing line that produced 60 mol% acetyl-TAGs, had no or relatively minor effects on MCFAs accumulation, suggesting fluxes to MCFAs were largely unaltered. Seed germination assays revealed no or minor delays in seed germination for most lines, the exception being CpFatB2 ChFatB2-expressing lines, which had substantially slower seed germination rates. Taken together, these data show that pennycress can be engineered to produce seeds accumulating modest amounts of MCFAs of varying carbon-chain length in TAGs and acetyl-TAGs, with rates of seed germination being delayed in only some cases. We hypothesize that increasing MCFAs further may require functional reductions to endogenous transferases and/or other FA elongases.


iScience ◽  
2021 ◽  
Vol 24 (1) ◽  
pp. 101929
Author(s):  
Tomokazu Fukuda ◽  
Kai Furuya ◽  
Kouhei Takahashi ◽  
Ai Orimoto ◽  
Eriko Sugano ◽  
...  

2021 ◽  
Vol 9 (1) ◽  
pp. 275-296
Author(s):  
A. Carmona ◽  
A.M. Encinas ◽  
M. Mitjana

Abstract By using combinatorial techniques, we obtain an extension of the matrix-tree theorem for general symmetric M-matrices with no restrictions, this means that we do not have to assume the diagonally dominance hypothesis. We express the group inverse of a symmetric M–matrix in terms of the weight of spanning rooted forests. In fact, we give a combinatorial expression for both the determinant of the considered matrix and the determinant of any submatrix obtained by deleting a row and a column. Moreover, the singular case is obtained as a limit case when certain parameter goes to zero. In particular, we recover some known results regarding trees. As examples that illustrate our results we give the expressions for the Group inverse of any symmetric M-matrix of order two and three. We also consider the case of the cycle C 4 an example of a non-contractible situation topologically different from a tree. Finally, we obtain some relations between combinatorial numbers, such as Horadam, Fibonacci or Pell numbers and the number of spanning rooted trees on a path.


Nature ◽  
2020 ◽  
Vol 588 (7838) ◽  
pp. E24-E24 ◽  
Author(s):  
Maria Marti-Solano ◽  
Stephanie E. Crilly ◽  
Duccio Malinverni ◽  
Christian Munk ◽  
Matthew Harris ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document