Immunohistochemical Detection of Bromodeoxyuridine-Labeled Nuclei for In Vivo Cell Kinetic Studies

Author(s):  
Jonathan A. Green ◽  
Richard E. Edwards ◽  
Margaret M. Manson
1992 ◽  
Vol 10 (12) ◽  
pp. 1983-1984 ◽  
Author(s):  
A Riccardi ◽  
M Danova ◽  
G Ucci
Keyword(s):  

2003 ◽  
pp. 251-254
Author(s):  
Jonathan A. Green ◽  
Richard E. Edwards ◽  
Margaret M. Manson
Keyword(s):  

1979 ◽  
Vol 42 (05) ◽  
pp. 1473-1482 ◽  
Author(s):  
A Dup Heyns ◽  
P N Badenhorst ◽  
H Pieters ◽  
M G Lötter ◽  
P C Minnaar ◽  
...  

SummaryFactors influencing labelling of human platelets with 111Indium-8-hydroxyquinoline ([111In]-oxine) in a physiological saline medium were investigated. The efficiency of labelling is influenced by time of incubation, concentration of oxine, and pH of the incubating medium. It was found that a viable platelet population could be labelled under the following conditions: (1) centrifugation of platelet rich plasma in polystyrene conical tubes at 800 g for 15 min; (2) resuspension of the platelet pellet in saline, pH 5.5; (3) incubating for 30 min at 22°C with [111In]-oxine at a concentration of 6.25 mg oxine/litre platelet suspension; (4) washing once with platelet poor autologous plasma (PPP); and (5) finally resuspending the platelets in PPP. The labelled platelets aggregated normally with collagen and ADP. Electron microscopy, done immediately after labelling, showed internal organelle reorganization characteristic of activated platelets. These ultrastructural features were reversible on incubation in PPP at 37°C for 30 min. The 111In is not released from aggregated platelets and the label does not elute from incubated platelets for at least five hr. We conclude that human platelets thus labelled are suitable for in vivo kinetic studies.


Diabetes ◽  
1975 ◽  
Vol 24 (12) ◽  
pp. 1094-1100 ◽  
Author(s):  
A. Rabinovitch ◽  
A. Gutzeit ◽  
A. E. Renold ◽  
E. Cerasi

1982 ◽  
Vol 9 (4) ◽  
pp. 271-278 ◽  
Author(s):  
Shinji Shimada ◽  
Makoto Kawashima ◽  
Shinichi Watanabe ◽  
Kiyoshi Yamada ◽  
Masako Mizoguchi ◽  
...  

2017 ◽  
Vol 114 (38) ◽  
pp. 10101-10106 ◽  
Author(s):  
Kanishk Jain ◽  
Cyrus Y. Jin ◽  
Steven G. Clarke

Arginine methylation on histones is a central player in epigenetics and in gene activation and repression. Protein arginine methyltransferase (PRMT) activity has been implicated in stem cell pluripotency, cancer metastasis, and tumorigenesis. The expression of one of the nine mammalian PRMTs, PRMT5, affects the levels of symmetric dimethylarginine (SDMA) at Arg-3 on histone H4, leading to the repression of genes which are related to disease progression in lymphoma and leukemia. Another PRMT, PRMT7, also affects SDMA levels at the same site despite its unique monomethylating activity and the lack of any evidence for PRMT7-catalyzed histone H4 Arg-3 methylation. We present evidence that PRMT7-mediated monomethylation of histone H4 Arg-17 regulates PRMT5 activity at Arg-3 in the same protein. We analyzed the kinetics of PRMT5 over a wide range of substrate concentrations. Significantly, we discovered that PRMT5 displays positive cooperativity in vitro, suggesting that this enzyme may be allosterically regulated in vivo as well. Most interestingly, monomethylation at Arg-17 in histone H4 not only raised the general activity of PRMT5 with this substrate, but also ameliorated the low activity of PRMT5 at low substrate concentrations. These kinetic studies suggest a biochemical explanation for the interplay between PRMT5- and PRMT7-mediated methylation of the same substrate at different residues and also suggest a general model for regulation of PRMTs. Elucidating the exact relationship between these two enzymes when they methylate two distinct sites of the same substrate may aid in developing therapeutics aimed at reducing PRMT5/7 activity in cancer and other diseases.


2010 ◽  
Vol 76 (21) ◽  
pp. 7217-7225 ◽  
Author(s):  
Daniel P. MacEachran ◽  
M. E. Prophete ◽  
A. J. Sinskey

ABSTRACT Generally, prokaryotes store carbon as polyhydroxyalkanoate, starch, or glycogen. The Gram-positive actinomycete Rhodococcus opacus strain PD630 is noteworthy in that it stores carbon in the form of triacylglycerol (TAG). Several studies have demonstrated that R. opacus PD630 can accumulate up to 76% of its cell dry weight as TAG when grown under nitrogen-limiting conditions. While this process is well studied, the underlying molecular and biochemical mechanisms leading to TAG biosynthesis and subsequent storage are poorly understood. We designed a high-throughput genetic screening to identify genes and their products required for TAG biosynthesis and storage in R. opacus PD630. We identified a gene predicted to encode a putative heparin-binding hemagglutinin homolog, which we have termed tadA (triacylglycerol accumulation deficient), as being important for TAG accumulation. Kinetic studies of TAG accumulation in both the wild-type (WT) and mutant strains demonstrated that the tadA mutant accumulates 30 to 40% less TAG than the parental strain (WT). We observed that lipid bodies formed by the mutant strain were of a different size and shape than those of the WT. Characterization of TadA demonstrated that the protein is capable of binding heparin and of agglutinating purified lipid bodies. Finally, we observed that the TadA protein localizes to lipid bodies in R. opacus PD630 both in vivo and in vitro. Based on these data, we hypothesize that the TadA protein acts to aggregate small lipid bodies, found in cells during early stages of lipid storage, into larger lipid bodies and thus plays a key role in lipid body maturation in R. opacus PD630.


Sign in / Sign up

Export Citation Format

Share Document