tag biosynthesis
Recently Published Documents


TOTAL DOCUMENTS

31
(FIVE YEARS 16)

H-INDEX

10
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Yi-Ying Lee ◽  
Rudolph Park ◽  
Stephen Miller ◽  
Yantao Li

Genetic compensation has been proposed to explain phenotypic differences between gene knockouts and knockdowns in several metazoan and plant model systems. With the rapid development of reverse genetic tools such as CRISPR/Cas9 and RNAi in microalgae, it is increasingly important to assess whether genetic compensation affects the phenotype of engineered algal mutants. While exploring triacylglycerol (TAG) biosynthesis pathways in the model alga Chlamydomonas reinhardtii, it was discovered that knockout of certain genes catalyzing rate-limiting steps of TAG biosynthesis, type-2 diacylglycerol acyltransferase genes (DGTTs), triggered genetic compensation under abiotic stress conditions. Genetic compensation of a DGTT1 null mutation by a related PDAT gene was observed regardless of the strain background or mutagenesis approach, e.g., CRISPR/Cas 9 or insertional mutagenesis. However, no compensation was found in the PDAT knockout mutant. The effect of PDAT knockout was evaluated in a Δvtc1 mutant, in which PDAT was up-regulated under stress, resulting in a 90% increase in TAG content. Knockout of PDAT in the Δvtc1 background induced a 12.8-fold upregulation of DGTT1 and a 272.3% increase in TAG content in Δvtc1/pdat1 cells, while remaining viable. These data suggest that genetic compensation contributes to the genetic robustness of microalgal TAG biosynthetic pathways, maintaining lipid and redox homeostasis in the knockout mutants under abiotic stress. This work demonstrates examples of genetic compensation in microalgae, implies the physiological relevance of genetic compensation in TAG biosynthesis under stress, and provides guidance for future genetic engineering and mutant characterization efforts.


Marine Drugs ◽  
2021 ◽  
Vol 19 (7) ◽  
pp. 368
Author(s):  
Omri Avidan ◽  
Sergey Malitsky ◽  
Uri Pick

The aims of this work were to evaluate the contribution of the free fatty acid (FA) pool to triacylglyceride (TAG) biosynthesis and to try to characterize the mechanism by which FA are assimilated into TAG in the green alga Dunaliella tertiolecta. A time-resolved lipidomic analysis showed that nitrogen (N) deprivation induces a redistribution of total lipidome, particularly of free FA and major polar lipid (PL), in parallel to enhanced accumulation of polyunsaturated TAG. The steady-state concentration of the FA pool, measured by prolonged 14C-bicarbonate pre-labeling, showed that N deprivation induced a 50% decrease in total FA level within the first 24 h and up to 85% after 96 h. The abundance of oleic acid increased from 50 to 70% of total free FA while polyunsaturated FA (PUFA) disappeared under N deprivation. The FA flux, measured by the rate of incorporation of 14C-palmitic acid (PlA), suggests partial suppression of phosphatidylcholine (PC) acyl editing and an enhanced turnover of the FA pool and of total digalactosyl-diacylglycerol (DGDG) during N deprivation. Taken together, these results imply that FA biosynthesis is a major rate-controlling stage in TAG biosynthesis in D. tertiolecta and that acyl transfer through PL such as PC and DGDG is the major FA assimilation pathway into TAG in that alga and possibly in other green microalgae. Increasing the availability of FA could lead to enhanced TAG biosynthesis and to improved production of high-value products from microalgae.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Agostina Crotta Asis ◽  
Franco Savoretti ◽  
Matías Cabruja ◽  
Hugo Gramajo ◽  
Gabriela Gago

AbstractPhosphatidic acid phosphatase (PAP) catalyzes the dephosphorylation of phosphatidic acid (PA) yielding diacylglycerol (DAG), the lipid precursor for triacylglycerol (TAG) biosynthesis. PAP activity has a key role in the regulation of PA flux towards TAG or glycerophospholipid synthesis. In this work we have characterized two Mycobacterium smegmatis genes encoding for functional PAP proteins. Disruption of both genes provoked a sharp reduction in de novo TAG biosynthesis in early growth phase cultures under stress conditions. In vivo labeling experiments demonstrated that TAG biosynthesis was restored in the ∆PAP mutant when bacteria reached exponential growth phase, with a concomitant reduction of phospholipid synthesis. In addition, comparative lipidomic analysis showed that the ∆PAP strain had increased levels of odd chain fatty acids esterified into TAGs, suggesting that the absence of PAP activity triggered other rearrangements of lipid metabolism, like phospholipid recycling, in order to maintain the wild type levels of TAG. Finally, the lipid changes observed in the ∆PAP mutant led to defective biofilm formation. Understanding the interaction between TAG synthesis and the lipid composition of mycobacterial cell envelope is a key step to better understand how lipid homeostasis is regulated during Mycobacterium tuberculosis infection.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Yu Gao ◽  
Yan Sun ◽  
Huiling Gao ◽  
Ying Chen ◽  
Xiaoqing Wang ◽  
...  

Abstract Background Engineering triacylglycerol (TAG) accumulation in vegetative tissues of non-food crops has become a promising way to meet our increasing demand for plant oils, especially the renewable production of biofuels. The most important target modified in this regard is diacylglycerol acyltransferase (DGAT) enzyme responsible for the final rate-limiting step in TAG biosynthesis. Cyperus esculentus is a unique plant largely accumulating oleic acid-enriched oil in its underground tubers. We speculated that DGAT derived from such oil-rich tubers could function more efficiently than that from oleaginous seeds in enhancing oil storage in vegetative tissues of tobacco, a high-yielding biomass crops. Results Three CeDGAT genes namely CeDGAT1, CeDGAT2-1 and CeDGAT2-2 were identified in C. esculentus by mining transcriptome of developing tubers. These CeDGATs were expressed in tissues tested, with CeDGAT1 highly in roots, CeDGAT2-1 abundantly in leaves, and CeDGAT2-2 predominantly in tubers. Notably, CeDGAT2-2 expression pattern was in accordance with oil dynamic accumulation during tuber development. Overexpression of CeDGAT2-2 functionally restored TAG biosynthesis in TAG-deficient yeast mutant H1246. Oleic acid level was significantly increased in CeDGAT2-2 transgenic yeast compared to the wild-type yeast and ScDGA1-expressed control under culture with and without feeding of exogenous fatty acids. Overexpressing CeDGAT2-2 in tobacco led to dramatic enhancements of leafy oil by 7.15- and 1.7-fold more compared to the wild-type control and plants expressing Arabidopsis seed-derived AtDGAT1. A substantial change in fatty acid composition was detected in leaves, with increase of oleic acid from 5.1% in the wild type to 31.33% in CeDGAT2-2-expressed tobacco and accompanied reduction of saturated fatty acids. Moreover, the elevated accumulation of oleic acid-enriched TAG in transgenic tobacco exhibited no significantly negative impact on other agronomic traits such as photosynthesis, growth rates and seed germination except for small decline of starch content. Conclusions The present data indicate that CeDGAT2-2 has a high enzyme activity to catalyze formation of TAG and a strong specificity for oleic acid-containing substrates, providing new insights into understanding oil biosynthesis mechanism in plant vegetative tissues. Overexpression of CeDGAT2-2 alone can significantly increase oleic acid-enriched oil accumulation in tobacco leaves without negative impact on other agronomy traits, showing CeDGAT2-2 as the desirable target gene in metabolic engineering to enrich oil and value-added lipids in high-biomass plants for commercial production of biofuel oils.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Hongli Cui ◽  
Chunchao Zhao ◽  
Wenxin Xu ◽  
Hongjiang Zhang ◽  
Wei Hang ◽  
...  

Abstract Background Haematococcus lacustris is an ideal source of astaxanthin (AST), which is stored in oil bodies containing esterified AST (EAST) and triacylglycerol (TAG). Diacylglycerol acyltransferases (DGATs) catalyze the last step of acyl-CoA-dependent TAG biosynthesis and are also considered as crucial enzymes involved in EAST biosynthesis in H. lacustris. Previous studies have identified four putative DGAT2-encoding genes in H. lacustris, and only HpDGAT2D allowed the recovery of TAG biosynthesis, but the engineering potential of HpDGAT2s in TAG biosynthesis remains ambiguous. Results Five putative DGAT2 genes (HpDGAT2A, HpDGAT2B, HpDGAT2C, HpDGAT2D, and HpDGAT2E) were identified in H. lacustris. Transcription analysis showed that the expression levels of the HpDGAT2A, HpDGAT2D, and HpDGAT2E genes markedly increased under high light and nitrogen deficient conditions with distinct patterns, which led to significant TAG and EAST accumulation. Functional complementation demonstrated that HpDGAT2A, HpDGAT2B, HpDGAT2D, and HpDGAT2E had the capacity to restore TAG synthesis in a TAG-deficient yeast strain (H1246) showing a large difference in enzymatic activity. Fatty acid (FA) profile assays revealed that HpDGAT2A, HpDGAT2D, and HpDGAT2E, but not HpDGAT2B, preferred monounsaturated fatty acyl-CoAs (MUFAs) for TAG synthesis in yeast cells, and showed a preference for polyunsaturated fatty acyl-CoAs (PUFAs) based on their feeding strategy. The heterologous expression of HpDGAT2D in Arabidopsis thaliana and Chlamydomonas reinhardtii significantly increased the TAG content and obviously promoted the MUFAs and PUFAs contents. Conclusions Our study represents systematic work on the characterization of HpDGAT2s by integrating expression patterns, AST/TAG accumulation, functional complementation, and heterologous expression in yeast, plants, and algae. These results (1) update the gene models of HpDGAT2s, (2) prove the TAG biosynthesis capacity of HpDGAT2s, (3) show the strong preference for MUFAs and PUFAs, and (4) offer target genes to modulate TAG biosynthesis by using genetic engineering methods.


2020 ◽  
Author(s):  
Hongli Cui ◽  
Chunchao Zhao ◽  
Wenxin Xu ◽  
Hongjiang Zhang ◽  
Wei Hang ◽  
...  

Abstract Background: Haematococcus lacustris is an ideal source of astaxanthin (AST), which is stored in oil bodies containing esterified AST (EAST) and triacylglycerol (TAG). Diacylglycerol acyltransferases (DGATs) catalyze the last step of acyl-CoA-dependent TAG biosynthesis and are also considered as crucial enzymes involved in EAST biosynthesis in H. lacustris. Previous studies have identified four putative DGAT2-encoding genes in H. lacustris, and only HpDGAT2D allowed the recovery of TAG biosynthesis, but the engineering potential of HpDGAT2s in TAG biosynthesis remains ambiguous.Results: Five putative DGAT2 genes (HpDGAT2A, HpDGAT2B, HpDGAT2C, HpDGAT2D, and HpDGAT2E) were identified in H. lacustris. Transcription analysis showed that the expression levels of the HpDGAT2A, HpDGAT2D, and HpDGAT2E genes markedly increased under high light and nitrogen deficient conditions with distinct patterns, which led to significant TAG and EAST accumulation. Functional complementation demonstrated that HpDGAT2A, HpDGAT2B, HpDGAT2D, and HpDGAT2E had the capacity to restore TAG synthesis in a TAG-deficient yeast strain (H1246) showing a large difference in enzymatic activity. Fatty acid (FA) profile assays revealed that HpDGAT2A, HpDGAT2D, and HpDGAT2E, but not HpDGAT2B, preferred monounsaturated fatty acyl-CoAs (MUFAs) for TAG synthesis in yeast cells, and showed a preference for polyunsaturated fatty acyl-CoAs (PUFAs) based on their feeding strategy. The heterologous expression of HpDGAT2D in Arabidopsis thaliana and Chlamydomonas reinhardtii significantly increased the TAG content and obviously promoted the MUFAs and PUFAs contents.Conclusions: Our study represents systematic work on the characterization of HpDGAT2s by integrating expression patterns, AST/TAG accumulation, functional complementation, and heterologous expression in yeast, plants, and algae. These results (1) update the gene models of HpDGAT2s, (2) prove the TAG biosynthesis capacity of HpDGAT2s, (3) show the strong preference for MUFAs and PUFAs, and (4) offer target genes to modulate TAG biosynthesis by using genetic engineering methods.


2020 ◽  
Author(s):  
Hongli Cui ◽  
Chunchao Zhao ◽  
Wenxin Xu ◽  
Hongjiang Zhang ◽  
Wei Hang ◽  
...  

Abstract Background: Haematococcus lacustris is an ideal source of astaxanthin (AST), which is stored in oil bodies containing esterified AST (EAST) and triacylglycerol (TAG). Diacylglycerol acyltransferases (DGATs) catalyze the last step of acyl-CoA-dependent TAG biosynthesis and are also considered as crucial enzymes involved in EAST biosynthesis in H. lacustris. Previous studies have identified four putative DGAT2-encoding genes in H. lacustris, and only HpDGAT2D allowed the recovery of TAG biosynthesis, but the engineering potential of HpDGAT2s in TAG biosynthesis remains ambiguous.Results: Five putative DGAT2 genes (HpDGAT2A, HpDGAT2B, HpDGAT2C, HpDGAT2D, and HpDGAT2E) were identified in H. lacustris. Transcription analysis showed that the expression levels of the HpDGAT2A, HpDGAT2D, and HpDGAT2E genes markedly increased under high light and nitrogen deficient conditions with distinct patterns, which led to significant TAG and EAST accumulation. Functional complementation demonstrated that HpDGAT2A, HpDGAT2B, HpDGAT2D, and HpDGAT2E had the capacity to restore TAG synthesis in a TAG-deficient yeast strain (H1246) showing a large difference in enzymatic activity. Fatty acid (FA) profile assays revealed that HpDGAT2A, HpDGAT2D, and HpDGAT2E, but not HpDGAT2B, preferred monounsaturated fatty acyl-CoAs (MUFAs) for TAG synthesis in yeast cells, and showed a preference for polyunsaturated fatty acyl-CoAs (PUFAs) based on their feeding strategy. The heterologous expression of HpDGAT2D in Arabidopsis thaliana and Chlamydomonas reinhardtii significantly increased the TAG content and obviously promoted the MUFAs and PUFAs contents.Conclusions: Our study represents systematic work on the characterization of HpDGAT2s by integrating expression patterns, AST/TAG accumulation, functional complementation, and heterologous expression in yeast, plants, and algae. These results (1) update the gene models of HpDGAT2s, (2) prove the TAG biosynthesis capacity of HpDGAT2s, (3) show the strong preference for MUFAs and PUFAs, and (4) offer target genes to modulate TAG biosynthesis by using genetic engineering methods.


2020 ◽  
Vol 11 ◽  
Author(s):  
Kamilya Kokabi ◽  
Olga Gorelova ◽  
Boris Zorin ◽  
Shoshana Didi-Cohen ◽  
Maxim Itkin ◽  
...  

The green microalga Lobosphaera incisa accumulates triacylglycerols (TAGs) with exceptionally high levels of long-chain polyunsaturated fatty acid (LC-PUFA) arachidonic acid (ARA) under nitrogen (N) deprivation. Phosphorous (P) deprivation induces milder changes in fatty acid composition, cell ultrastructure, and growth performance. We hypothesized that the resource-demanding biosynthesis and sequestration of ARA-rich TAG in lipid droplets (LDs) are associated with the enhancement of catabolic processes, including membrane lipid turnover and autophagic activity. Although this work focuses mainly on N deprivation, a comparative analysis of N and P deprivation responses is included. The results of lipidomic profiling showed a differential impact of N and P deprivation on the reorganization of glycerolipids. The formation of TAG under N deprivation was associated with the enhanced breakdown of chloroplast glycerolipids and the formation of lyso-lipids. N-deprived cells displayed a profound reorganization of cell ultrastructure, including internalization of cellular material into autophagic vacuoles, concomitant with the formation of LDs, while P-deprived cells showed better cellular ultrastructural integrity. The expression of the hallmark autophagy protein ATG8 and the major lipid droplet protein (MLDP) genes were coordinately upregulated, but to different extents under either N or P deprivation. The expression of the Δ5-desaturase gene, involved in the final step of ARA biosynthesis, was coordinated with ATG8 and MLDP, exclusively under N deprivation. Concanamycin A, the inhibitor of vacuolar proteolysis and autophagic flux, suppressed growth and enhanced levels of ATG8 and TAG in N-replete cells. The proportions of ARA in TAG decreased with a concomitant increase in oleic acid under both N-replete and N-deprived conditions. The photosynthetic apparatus’s recovery from N deprivation was impaired in the presence of the inhibitor, along with the delayed LD degradation. The GFP-ATG8 processing assay showed the release of free GFP in N-replete and N-deprived cells, supporting the existence of autophagic flux. This study provides the first insight into the homeostatic role of autophagy in L. incisa and points to a possible metabolic link between autophagy and ARA-rich TAG biosynthesis.


2020 ◽  
Vol 7 (4) ◽  
pp. 148
Author(s):  
Sachiyo Aburatani ◽  
Koji Ishiya ◽  
Toshikazu Itoh ◽  
Toshihiro Hayashi ◽  
Takeaki Taniguchi ◽  
...  

Improving the bioproduction ability of efficient host microorganisms is a central aim in bioengineering. To control biosynthesis in living cells, the regulatory system of the whole biosynthetic pathway should be clearly understood. In this study, we applied our network modeling method to infer the regulatory system for triacylglyceride (TAG) biosynthesis in Lipomyces starkeyi, using factor analyses and structural equation modeling to construct a regulatory network model. By factor analysis, we classified 89 TAG biosynthesis-related genes into nine groups, which were considered different regulatory sub-systems. We constructed two different types of regulatory models. One is the regulatory model for oil productivity, and the other is the whole regulatory model for TAG biosynthesis. From the inferred oil productivity regulatory model, the well characterized genes DGA1 and ACL1 were detected as regulatory factors. Furthermore, we also found unknown feedback controls in oil productivity regulation. These regulation models suggest that the regulatory factor induction targets should be selected carefully. Within the whole regulatory model of TAG biosynthesis, some genes were detected as not related to TAG biosynthesis regulation. Using network modeling, we reveal that the regulatory system is helpful for the new era of bioengineering.


2020 ◽  
Author(s):  
Hongli Cui ◽  
Chunchao Zhao ◽  
Wenxin Xu ◽  
Hongjiang Zhang ◽  
Wei Hang ◽  
...  

Abstract Background: Haematococcus lacustris is an ideal source of astaxanthin (AST), which is stored in oil bodies containing esterified AST (EAST) and triacylglycerol (TAG). Diacylglycerol acyltransferases (DGATs) catalyze the last step of acyl-CoA-dependent TAG biosynthesis and are also considered as crucial enzymes involved in EAST biosynthesis in H. lacustris. Previous studies have identified four putative DGAT2-encoding genes in H. lacustris, and only HpDGAT2D allowed the recovery of TAG biosynthesis, but the engineering potential of HpDGAT2s in TAG biosynthesis remains ambiguous.Results: Five putative DGAT2 genes (HpDGAT2A, HpDGAT2B, HpDGAT2C, HpDGAT2D, and HpDGAT2E) were identified in H. lacustris. Transcription analysis showed that the expression levels of the HpDGAT2A, HpDGAT2D, and HpDGAT2E genes markedly increased under high light and nitrogen deficient conditions with distinct patterns, which led to significant TAG and EAST accumulation. Functional complementation demonstrated that HpDGAT2A, HpDGAT2B, HpDGAT2D, and HpDGAT2E had the capacity to restore TAG synthesis in a TAG-deficient yeast strain (H1246) showing a large difference in enzymatic activity. Fatty acid (FA) profile assays revealed that HpDGAT2A, HpDGAT2D, and HpDGAT2E, but not HpDGAT2B, preferred monounsaturated fatty acyl-CoAs (MUFAs) for TAG synthesis in yeast cells, and showed a preference for polyunsaturated fatty acyl-CoAs (PUFAs) based on their feeding strategy. The heterologous expression of HpDGAT2D in Arabidopsis thaliana and Chlamydomonas reinhardtii significantly increased the TAG content and obviously promoted the MUFAs and PUFAs contents.Conclusions: Our study represents pioneering work on the characterization of HpDGAT2s by systematically integrating expression patterns, AST/TAG accumulation, functional complementation, and heterologous expression in yeast, plants, and algae. These results (1) update the gene models of HpDGAT2s, (2) prove the TAG biosynthesis capacity of HpDGAT2s, (3) show the strong preference for MUFAs and PUFAs, and (4) offer target genes to modulate TAG biosynthesis by using genetic engineering methods.


Sign in / Sign up

Export Citation Format

Share Document