Identification and Characterization of Hematopoietic Stem and Progenitor Cell Populations in Mouse Bone Marrow by Flow Cytometry

Author(s):  
Jenny Yeung ◽  
and Chi Wai Eric So
2012 ◽  
Vol 21 (9) ◽  
pp. 2021-2032 ◽  
Author(s):  
Silvia Claros ◽  
Noela Rodríguez-Losada ◽  
Encarnación Cruz ◽  
Enrique Guerado ◽  
José Becerra ◽  
...  

Blood ◽  
1995 ◽  
Vol 85 (10) ◽  
pp. 2742-2746 ◽  
Author(s):  
RJ Jones ◽  
JP Barber ◽  
MS Vala ◽  
MI Collector ◽  
SH Kaufmann ◽  
...  

Cytosolic aldehyde dehydrogenase (ALDH), an enzyme responsible for oxidizing intracellular aldehydes, has an important role in ethanol, vitamin A, and cyclophosphamide metabolism. High expression of this enzyme in primitive stem cells from multiple tissues, including bone marrow and intestine, appears to be an important mechanism by which these cells are resistant to cyclophosphamide. However, although hematopoietic stem cells (HSC) express high levels of cytosolic ALDH, isolating viable HSC by their ALDH expression has not been possible because ALDH is an intracellular protein. We found that a fluorescent aldehyde, dansyl aminoacetaldehyde (DAAA), could be used in flow cytometry experiments to isolate viable mouse and human cells based on their ALDH content. The level of dansyl fluorescence exhibited by cells after incubation with DAAA paralleled cytosolic ALDH levels determined by Western blotting and the sensitivity of the cells to cyclophosphamide. Moreover, DAAA appeared to be a more sensitive means of assessing cytosolic ALDH levels than Western blotting. Bone marrow progenitors treated with DAAA proliferated normally. Furthermore, marrow cells expressing high levels of dansyl fluorescence after incubation with DAAA were enriched for hematopoietic progenitors. The ability to isolate viable cells that express high levels of cytosolic ALDH could be an important component of methodology for identifying and purifying HSC and for studying cyclophosphamide-resistant tumor cell populations.


Blood ◽  
2005 ◽  
Vol 105 (11) ◽  
pp. 4282-4289 ◽  
Author(s):  
Maria Célia Jamur ◽  
Ana Cristina G. Grodzki ◽  
Elsa H. Berenstein ◽  
Majed M. Hamawy ◽  
Reuben P. Siraganian ◽  
...  

Abstract Sequential immunomagnetic isolation with 2 monoclonal antibodies was used to purify and characterize an undifferentiated mast cell in adult mouse bone marrow that had not been previously recognized. This cell represents 0.02% of the cells in the bone marrow, is CD34+, CD13+, and c-kit+, and does not express FcϵRI. However, by polymerase chain reaction (PCR) the cell contains message for the α and β subunits of FcϵRI, mast cell–specific proteases, and carboxypeptidase A. Morphologically, this cell has a large nucleus, little cytoplasm, few cytoplasmic organelles, and no cytoplasmic granules. In vitro, in the presence of interleukin-3 (IL-3) and stem cell factor (SCF) these cells differentiate only into a granulated mast cell that now expresses CD13, c-kit, mast cell–specific gangliosides, FcϵRI, and binds immunoglobulin E (IgE). When injected into lethally irradiated mice, these cells are able to reconstitute the mast cell population in the spleen.


2016 ◽  
Vol 179 (3) ◽  
pp. 499-501 ◽  
Author(s):  
Thomas Menter ◽  
Abbas H. Abdulsalam ◽  
Elisabet Nadal-Melsio ◽  
Eva Yebra-Fernandez ◽  
Rashpal S. Flora ◽  
...  

2021 ◽  
Author(s):  
Carole Siret ◽  
Max van Lessen ◽  
Hyun-Woo Jeong ◽  
Shuaiwei Wang ◽  
Milesa Simic ◽  
...  

Abstract Perivascular macrophages (pvM) are closely associated with cerebral vasculature and play an essential role in drainage of the brain and regulation of the immune response. Here, using reporter mouse models and immunofluorescence on sections and whole brain, flow cytometry and single cell sequencing, we identify a Lyve1+ brain perivascular population lacking classical macrophage markers such as CD45 and Cx3cr1. We named the new non-conventional CD45 negative perivascular macrophages pvM2. These cells have a similar location, morphology and phagocytic function as conventional pvM. The pvM2 are not derived from hematopoietic stem cells, as they are negative in the VavtdT lineage tracing model. They increase in number after photothrombotic induced stroke established by flow cytometry and 3D immunofluorescence analysis. Since CD45 negative cells were typically excluded from macrophage studies, the presence of pvM2 has been previously missed and their role is of importance to assess in the brain disease models.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 5544-5544
Author(s):  
Mariluz P. Mojica-Henshaw ◽  
L. Jeanne Pierce ◽  
John D. Phillips ◽  
Vicente Planelles ◽  
Gerald J. Spangrude

Abstract We have developed a method to clonally mark hematopoietic stem and lymphoid progenitor cell populations using a novel sequence tag approach. A library containing an 11-base random sequence tag is cloned into a lentivirus vector, packaged using the VSV-G glycoprotein and HIV-1 capsid, and transduced into freshly isolated mouse hematopoietic stem cell (Thy-1.1lowc-kithigh) or progenitor cell (Thy-1.1negc-kithigh) populations. To minimize artifacts introduced by prolonged culture, we have utilized a 3-hour spinoculation protocol performed in the absence of cytokines. Transduction efficiency was evaluated in vitro by methylcellulose colony assay and liquid cultures, and in vivo by transplanting the transduced cells into lethally irradiated mice. A bicistronic lentivirus vector with a CMV promoter driving expression of a transcript encoding Thy-1.2-IRES-GFP was used to optimize the transduction protocol. Liquid culture assays demonstrated 57% transduction efficiency after 5 days of growth, based on expression of the Thy-1.2 and GFP reporter proteins. Mice transplanted with transduced Thy-1.1negc-kithigh progenitor cells were sacrificed after 16 days, a time at which we have previously observed robust progenitor cell engraftment in the thymus while progeny of Thy-1.1lowc-kithigh HSC have not yet appeared. In 4 of 4 transplanted mice, we observed donor-derived cells in the bone marrow, lymph nodes and thymus. The percentage of total cells expressing the lentivirus-derived transgene ranged from 1.6% of bone marrow cells to 20% of thymocytes. Peripheral blood from mice transplanted with transduced HSC were analyzed and monitored every 4 weeks for transgene expression. We observed that although the Thy-1.2 marker was expressed and maintained up to 14 weeks after HSC transplant, GFP transgene expression was minimal. Based on these preliminary results, we have engineered a new lentivirus vector containing random sequence tags and the Thy-1.2 marker. This strategy provides a simple and efficient way of tracking the progeny of individual cells within a transplanted population, using PCR amplification of the random tags found within mature cell populations derived from the transduced cells. Sequence analysis of individual clones derived from different lineages of cells will enable us to better define the lineage potentials of specific progenitor cell subpopulations.


Blood ◽  
1997 ◽  
Vol 90 (5) ◽  
pp. 1850-1857 ◽  
Author(s):  
Mark D. Potter ◽  
Sarah G. Shinpock ◽  
Raymond A. Popp ◽  
Diana M. Popp ◽  
Virginia Godfrey ◽  
...  

Abstract Identification and characterization of mutations that disrupt normal hematopoiesis are essential for understanding the genetic pathways that control the development and regulation of the mammalian hematopoietic system. Previously, the fitness 1 gene was identified by five, independent mutations in N-ethyl-N-nitrosourea (ENU) saturation mutagenesis experiments within the albino (c) region of mouse chromosome 7 (MMU7). We report here that fit1 mutants are anemic, display numerous peripheral blood defects, and are deficient in early hematopoietic progenitor cell populations. The number of both erythroid and myeloid progenitors, as well as B cells, are reduced. These results implicate fit1 involvement in normal hematopoiesis and suggest that further characterization of the fit1 gene, and the five presumed point mutations of the gene, will lead to an improved understanding of normal hematopoiesis in the mouse.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2855-2855
Author(s):  
Gorazd Krosl ◽  
Marie-Pier Giard ◽  
Jana Krosl ◽  
R. Keith Humphries ◽  
Guy Sauvageau ◽  
...  

Abstract The clinical application of therapeutic protocols depending on hematopoietic stem cell (HSC) transplantation for long term reconstitution with donor-derived HSCs, particularly in patients previously exposed to intensive radiation or chemo-therapy, or when grafts are purged of infiltrating malignant or alloreactive T cells, can be severely hampered by limited numbers of HSCs in the graft. In mouse bone marrow transplantation models, engineered overexpression of HOXB4 has been one of the most potent stimulator of HSC expansion identified to date. The simple addition of soluble recombinant TAT-HOXB4 protein was also recently reported to enable rapid in vitro expansion of mouse HSCs that retain their in vivo proliferation and differentiation capacity. To test the feasibility of using TAT-HOXB4 as a stimulator of human HSC expansion, we performed a series of experiments using CD34+ populations isolated from healthy volunteers. The CD34+ cell populations were cultured in X-Vivo medium supplemented with Stem Cell Factor (300 ng/mL) and G-CSF (50 ng/mL) in the presence or absence of TAT-HOXB4 protein (50 nmol/L) for 4 days. In response to TAT-HOXB4, total numbers of mononuclear cells demonstrated a modest but distinct 2-fold increase compared to controls. TAT-HOXB4 treatment had the largest proliferation enhancing effect on more primitive cell populations such as CFU-GEMM, BFU-E and BFU-Meg, whose numbers increased 26.5 ± 1.4 fold (mean±S.D.), 2.2 ± 0.7 fold and 2.1 ± 0.2 fold, respectively, over their input values, and 19.1 ± 1.3 fold, 2.7 ± 0.7 and 31 ± 3.4 fold, respectively, compared to growth factor only controls. In response to TAT-HOXB4, the total numbers of CD34+CD38-Lin- cells increased 2.1 ± 0.7 fold above their starting numbers compared to a 1.5 ± 0.5 fold loss of this population in control cultures. HSC numbers were enumerated at the beginning, and after a 4-day TAT-HOXB4 treatment period using a NOD/SCID repopulation assay. In response to 50 nM TAT-HOXB4, NOD/SCID repopulating cell (SRC) numbers increased ~2-fold over their input values, compared to a 9-fold loss in control cultures without TAT-HOXB4. These results show that recombinant TAT-HOXB4 protein has the capacity to rapidly induce ex vivo expansion of primitive human bone marrow populations, and suggest that optimization of treatment conditions will rapidly lead to clinically useful expansion of human HSCs.


Sign in / Sign up

Export Citation Format

Share Document