Simultaneous Saccharification and Fermentation and Partial Saccharification and Co-Fermentation of Lignocellulosic Biomass for Ethanol Production

Author(s):  
Joy Doran-Peterson ◽  
Amruta Jangid ◽  
Sarah K. Brandon ◽  
Emily DeCrescenzo-Henriksen ◽  
Bruce Dien ◽  
...  
2014 ◽  
Vol 917 ◽  
pp. 80-86
Author(s):  
Mohd Saman Siti Aisyah ◽  
Pacharakamol Petchpradab ◽  
Yoshimitsu Uemura ◽  
Suzana Yusup ◽  
Machi Kanna ◽  
...  

Separate hydrolysis and fermentation (SHF) is the common process in producing ethanol from lignocellulosic biomass. Nowadays, simultaneous saccharification and fermentation (SSF) process has been seen as potential process for producing ethanol with shortens process time with higher yield of ethanol. Hence, in the current work, the utilization of empty fruit bunches (EFB) in SSF process was studied. In order to improve saccharification reactivity of EFB, hydrothermal pretreatment at 180 and 220 °C was used to pretreat EFB. The findings showed that SSF has the potential in producing ethanol from EFB.


2016 ◽  
Vol 6 (1) ◽  
pp. 773-779
Author(s):  
Leonard Guimarães Carvalho ◽  
Luiz Felipe A. Modesto ◽  
Donato A. Gomes Aranda ◽  
Nei Pereira Jr

Brazil presents the world's largest potential for the production of palm oil due to nearly 75 million hectares of land suitable for palm culture and advantageous soil and climate. The biomass generated in the production of palm oil (palm pressed fiber, PPF) is mainly composed of lignocellulosic material that can be hydrolyzed into fermentable sugars for further conversion to ethanol. This work evaluated alkaline pretreatment of this palm oil residue and subsequent Simultaneous Saccharification and Fermentation (SSF), achieving a conversion of glucose to ethanol higher than 90% and a concentration equivalent to 22.40 g/L of the alcohol.  


2010 ◽  
Vol 171-172 ◽  
pp. 261-265
Author(s):  
Zhuang Zuo ◽  
Xiu Shan Yang

Corn stover was pretreated using different soaking conditions at mild temperature. Among the tested conditions, the best was 1% NaOH+8% NH4OH,50°C,48 h, Solid-to-liquid ratio 1:10. The results showed that soaking pretreatment achieved 63.6% delignification, retained the xylan and glucan. After enzymatic hydrolysis, conversion rates of xylan and glucan were 70.9% and 78.5%, respectively. The pretreated filtration re-soaking cause 52.7% xylan and 65.0% glucan conversion. NaOH+NH4OH treatment can be performed under mild conditions, gives a good buffering effect, low carbohydates degradation and extensive removal of lignin. Additionally, simultaneous saccharification and fermentation was conducted with pretreated corn stover to assess the ethanol production. For the whole process, 0.15g ethanol /g corn stover was achieved using Saccharomyces cerevisiae Y5, and 0.19g ethanol /g corn stover when using Pichia stipitis.


Sign in / Sign up

Export Citation Format

Share Document