Large Animal Model of Heart Failure for Assessment of Stem Cells

Author(s):  
Sharad Rastogi
2013 ◽  
Vol 5 (211) ◽  
pp. 211ra159-211ra159 ◽  
Author(s):  
L. Tilemann ◽  
A. Lee ◽  
K. Ishikawa ◽  
J. Aguero ◽  
K. Rapti ◽  
...  

2014 ◽  
Vol 115 (suppl_1) ◽  
Author(s):  
Saad Sikanderkhel ◽  
Olawale Onibile ◽  
Gregory P Walcott ◽  
Steven M Pogwizd

Introduction: Atrial fibrillation is common in heart failure (HF). Understanding of the mechanisms of atrial fibrillation (AF) is limited by the paucity of large animal AF models, especially in the failing heart. We developed a large animal model of nonischemic heart failure (HF) in dogs by combined aortic insufficiency and aortic constriction and observed that a number of HF dogs developed paroxysmal AF on holter monitor. Here we characterize the spontaneously-occurring pAF in these HF dogs and perform electrophysiologic (EP) assessment of atrial refractoriness and AF inducibility along with echocardiographic imaging of left ventricle (LV) and left atrium (LA). Methods: HF was induced in dogs by aortic insufficiency and aortic constriction, and serial echocardiography (for LV fractional shortening (FS) and LA size) and Holter monitoring was performed. In control and HF dogs, EP study of atrial refractory period (AERP) and AF inducibility (duration and atrial cycle length (CL)) was performed. Results: By Holter monitoring, paroxysmal AF was noted in 5 dogs with episodes ranging from 15 to 94 beats long (mean of 49±27 beats, n=12). In EP studies, control dogs (N=3) exhibited AERP of 176±8 ms. Burst pacing resulted in AF of very brief duration (mean 32±24 sec) and a mean AF CL of 138±6 ms. LV FS averaged 37% and LA size averaged 4.3 cm2. HF dogs (N=5) exhibited RAERP of 150±8 (p=0.05 vs control). Two of these dogs had sustained AF with ventricular response up to 230 bpm on Holter monitor. In the other 3 HF dogs, burst pacing induced AF with a mean duration of 232±185 sec (at times with conversion to atrial flutter) and with a mean AF CL = 110±4 ms (p=0.002 vs control). Echo data showed LVFS averaged 30% and LA area of 14.9 cm2 (p=0.05 vs control). Conclusion: Thus we have developed a novel large animal model of HF that exhibits paroxysmal and sustained AF. This model will provide an opportunity for the study of underlying AF mechanisms, the progression of remodeling in HF hearts leading to AF, and the assessment of human-scale interventions to better treat and prevent this arrhythmia.


2017 ◽  
Vol 121 (suppl_1) ◽  
Author(s):  
Angela Castellanos Rieger ◽  
Bryon A Tompkins ◽  
Makoto Natsumeda ◽  
Victoria Florea ◽  
Kevin Collon ◽  
...  

Background: Chronic Kidney Disease (CKD) is an independent risk factor for cardiovascular morbidity and mortality. Left ventricular (LV) hypertrophy and heart failure with preserved ejection fraction (HFpEF) are the primary manifestations of the cardiorenal syndrome in 60 to 80% of CKD patients. Therapies that improve morbidity and mortality in HFpEF are lacking. Stem cell therapy reduces fibrosis, increases neovascularization, and promotes cardiac repair in ischemic and non-ischemic cardiomyopathies. We hypothesized that stem cell treatment ameliorates HFpEF in a CKD model. Methods: Yorkshires pigs (n=27) underwent 5/6 nephrectomy via renal artery embolization and 4-weeks later received either: allogeneic (allo-) MSC (10х10 6 ), allo-kidney c-kit + cells (c-kit; 10х10 6 ), combination (MSC+c-kit; 1:1 ratio [5х10 6 each]), or placebo (each n=5). Cell therapy was delivered via the patent renal artery. Kidney function, renal and cardiac MRI, and PV loops were measured at baseline, and at 4- and 12-weeks (euthanasia) post-embolization. Results: The CKD model was confirmed by increased creatinine and BUN and decreased GFR. Mean arterial pressure (MAP) was not different between groups from baseline to 4 weeks (p=0.7). HFpEF was demonstrated at 4 weeks by increased LV mass (20.3%; p= 0.0001), wall thickening (p<0.008), EDP (p=0.01), EDPVR (p=0.005), and arterial elastance (p=0.03), with no change in EF. Diffuse intramyocardial fibrosis was evident in histological analysis and delayed enhancement MRI imaging. After 12 weeks, there was a significant difference in MAP between groups (p=0.04), with an increase in the placebo group (19.97± 8.65 mmHg, p=0.08). GFR significantly improved in the combination group (p=0.033). EDV increased in the placebo (p=0.009) and c-kit (p=0.004) groups. ESV increased most in the placebo group (7.14±1.62ml; p=0.022). EF, wall thickness, and LV mass did not differ between groups at 12 weeks. Conclusion: A CKD large animal model manifests the characteristics of HFpEF. Intra-renal artery allogeneic cell therapy was safe. A beneficial effect of cell therapy was observed in the combination and MSC groups. These findings have important implications on the use of cell therapy for HFpEF and cardiorenal syndrome.


2016 ◽  
Vol 28 (2) ◽  
pp. 130
Author(s):  
R. Sper ◽  
S. Simpson ◽  
X. Zhang ◽  
B. Collins ◽  
J. Piedrahita

Transgenic pigs are an attractive research model in the field of translational research, regenerative medicine, and stem cell therapy due to their anatomic, genetic, and physiological similarities with humans. The development of a transgenic murine model with a fusion of green fluorescent protein (GFP) to histone 2B protein (H2B, protein of nucleosome core) resulted in an easier and more convenient method for tracking cell migration and engraftment levels after transplantation as well as a way to better understand the complexity of molecular regulation within cell cycle/division, cancer biology, and chromosome dynamics. Up to now the development of a stable transgenic large animal model expressing H2B-GFP has not been described. Our objective was to develop the first transgenic porcine H2B-GFP model via CRISPR-CAS9 mediated recombination and somatic cell nuclear transfer (SCNT). Porcine fetal fibroblasts were cotransfected with CRISPR-CAS9 designed to target the 3′ untranslated region of ACTB locus and a targeting vector containing 1Kb homology arms to ACTB flanking an IRES-H2B-GFP transgene. Four days after transfection GFP cells were fluorescence activated cell sorted. Single cell colonies were generated and analysed by PCR, and heterozygous colonies were used as donor cells for SCNT. The custom designed CRISPR-CAS9 knockin system demonstrated a 2.4% knockin efficiency. From positive cells, 119 SCNT embryos were generated and transferred to a recipient gilt resulting in three positive founder boars (P1 generation). Boars show normal fertility (pregnancies obtained via AI of wild type sows). Generated P1 clones were viable and fertile with a transgene transmission rate of 55.8% (in concordance with Mendel’s law upon chi-square test with P = 0.05). Intranuclear H2B-GFP expression was confirmed via fluorescence microscopy on 8-day in vitro cultured SCNT blastocysts and a variety of tissues (heart, kidney, brain, bladder, skeletal muscle, stomach, skin, and so on) and primary cultured cells (chondrocytes, bone marrow derived, adipocyte derived, neural stem cells, and so on) from P1 cloned boars and F1 42-day fetuses and viable piglets. In addition, chromosome segregation could be easily identified during cell cycle division in in vitro cultured stem cells. Custom designed CRISPR-CAS 9 are able to drive homologous recombination in the ACTB locus in porcine fetal fibroblasts, allowing the generation of the first described viable H2B-GFP porcine model via SCNT. Generated clones and F1 generation expressed H2B-GFP ubiquitously, and transgene transmission rates were with concordance of Mendel’s law. This novel large animal model represents an improved platform for regenerative medicine and chromosome dynamic and cancer biology studies.


2011 ◽  
Vol 3 (92) ◽  
pp. 92ra64-92ra64 ◽  
Author(s):  
S. T. Pleger ◽  
C. Shan ◽  
J. Ksienzyk ◽  
R. Bekeredjian ◽  
P. Boekstegers ◽  
...  

Blood ◽  
2004 ◽  
Vol 104 (8) ◽  
pp. 2582-2590 ◽  
Author(s):  
Graça Almeida-Porada ◽  
Christopher D. Porada ◽  
Jason Chamberlain ◽  
Ali Torabi ◽  
Esmail D. Zanjani

Abstract We took advantage of the proliferative and permissive environment of the developing preimmune fetus to develop a noninjury large animal model in sheep, in which the transplantation of defined populations of human hematopoietic stem cells resulted in the establishment of human hematopoiesis and led to the formation of significant numbers of long-lasting, functional human liver cells, with some animals exhibiting levels as high as 20% of donor (human) hepatocytes 11 months after transplantation. A direct correlation was found between hepatocyte activity and phenotype of transplanted cells, cell dose administered, source of cells used on a cell-per-cell basis (bone marrow, cord blood, mobilized peripheral blood), and time after transplantation. Human hepatocytes generated in this model retained functional properties of normal hepatocytes, constituted hepatic functional units with the presence of human endothelial and biliary duct cells, and secreted human albumin that was detected in circulation. Transplanting populations of hematopoietic stem cells can efficiently generate significant numbers of functional hepatic cells in this noninjury large animal model and thus could be a means of ameliorating or curing genetic diseases in which a deficiency of liver cells or their products threatens the life of the fetus or newborn.


Sign in / Sign up

Export Citation Format

Share Document