Virus-Induced Gene Silencing and Agrobacterium tumefaciens-Mediated Transient Expression in Nicotiana tabacum

Author(s):  
Zhao Zhang ◽  
Bart P. H. J. Thomma
2019 ◽  
Vol 20 (16) ◽  
pp. 3976 ◽  
Author(s):  
Hongqiu Zeng ◽  
Yanwei Xie ◽  
Guoyin Liu ◽  
Yunxie Wei ◽  
Wei Hu ◽  
...  

Agrobacterium-mediated transient expression and virus-induced gene silencing (VIGS) are very useful in functional genomics in plants. However, whether these methods are effective in cassava (Manihot esculenta), one of the most important tropical crops, remains elusive. In this study, we used green fluorescent protein (GFP) and β-glucuronidase (GUS) as reporter genes in a transient expression assay. GFP or GUS could be detected in the infiltrated leaves at 2 days postinfiltration (dpi) and were evidenced by visual GFP and GUS assays, reverse-transcription PCR, and Western blot. In addition, phytoene desaturase (PDS) was used to show the silencing effect in a VIGS system. Both Agrobacterium GV3101 and AGL-1 with tobacco rattle virus (TRV)-MePDS-infiltrated distal leaves showed an albino phenotype at 20 dpi; in particular, the AGL-1-infiltrated plants showed an obvious albino area in the most distal leaves. Moreover, the silencing effect was validated by molecular identification. Notably, compared with the obvious cassava mosaic disease symptom infiltrated by African-cassava-mosaic-virus-based VIGS systems in previous studies, TRV-based VIGS-system-infiltrated cassava plants did not show obvious virus-induced disease symptoms, suggesting a significant advantage. Taken together, these methods could promote functional genomics in cassava.


2008 ◽  
Vol 21 (12) ◽  
pp. 1539-1548 ◽  
Author(s):  
Phillip A. Harries ◽  
Karuppaiah Palanichelvam ◽  
Sumana Bhat ◽  
Richard S. Nelson

The Tobacco mosaic virus (TMV) 126-kDa protein is a suppressor of RNA silencing previously shown to delay the silencing of transgenes in Nicotiana tabacum and N. benthamiana. Here, we demonstrate that expression of a 126-kDa protein–green fluorescent protein (GFP) fusion (126-GFP) in N. tabacum increases susceptibility to a broad assortment of viruses, including Alfalfa mosaic virus, Brome mosaic virus, Tobacco rattle virus (TRV), and Potato virus X. Given its ability to enhance TRV infection in tobacco, we tested the effect of 126-GFP expression on TRV-mediated virus-induced gene silencing (VIGS) and demonstrate that this protein can enhance silencing phenotypes. To explain these results, we examined the poorly understood effect of suppressor dosage on the VIGS response and demonstrated that enhanced VIGS corresponds to the presence of low levels of suppressor protein. A mutant version of the 126-kDa protein, inhibited in its ability to suppress silencing, had a minimal effect on VIGS, suggesting that the suppressor activity of the 126-kDa protein is indeed responsible for the observed dosage effects. These findings illustrate the sensitivity of host plants to relatively small changes in suppressor dosage and have implications for those interested in enhancing silencing phenotypes in tobacco and other species through VIGS.


2011 ◽  
Vol 12 (2) ◽  
pp. 83-92 ◽  
Author(s):  
Chang-jun Huang ◽  
Tong Zhang ◽  
Fang-fang Li ◽  
Xin-yue Zhang ◽  
Xue-ping Zhou

2021 ◽  
Vol 12 ◽  
Author(s):  
Takuya Ogata ◽  
Masami Toyoshima ◽  
Chihiro Yamamizo-Oda ◽  
Yasufumi Kobayashi ◽  
Kenichiro Fujii ◽  
...  

Quinoa (Chenopodium quinoa), native to the Andean region of South America, has been recognized as a potentially important crop in terms of global food and nutrition security since it can thrive in harsh environments and has an excellent nutritional profile. Even though challenges of analyzing the complex and heterogeneous allotetraploid genome of quinoa have recently been overcome, with the whole genome-sequencing of quinoa and the creation of genotyped inbred lines, the lack of technology to analyze gene function in planta is a major limiting factor in quinoa research. Here, we demonstrate that two virus-mediated transient expression techniques, virus-induced gene silencing (VIGS) and virus-mediated overexpression (VOX), can be used in quinoa. We show that apple latent spherical virus (ALSV) can induce gene silencing of quinoa phytoene desaturase (CqPDS1) in a broad range of quinoa inbred lines derived from the northern and southern highland and lowland sub-populations. In addition, we show that ALSV can be used as a VOX vector in roots. Our data also indicate that silencing a quinoa 3,4-dihydroxyphenylalanine 4,5-dioxygenase gene (CqDODA1) or a cytochrome P450 enzyme gene (CqCYP76AD1) inhibits betalain production and that knockdown of a reduced-height gene homolog (CqRHT1) causes an overgrowth phenotype in quinoa. Moreover, we show that ALSV can be transmitted to the progeny of quinoa plants. Thus, our findings enable functional genomics in quinoa, ushering in a new era of quinoa research.


BIO-PROTOCOL ◽  
2015 ◽  
Vol 5 (12) ◽  
Author(s):  
Lokanadha Gunupuru ◽  
Shahin Ali ◽  
Fiona Doohan ◽  
Steven Scofield

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Yuh Tzean ◽  
Ming-Chi Lee ◽  
Hsiao-Hsuan Jan ◽  
Yi-Shu Chiu ◽  
Tsui-Chin Tu ◽  
...  

Plant Methods ◽  
2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Decai Tuo ◽  
Peng Zhou ◽  
Pu Yan ◽  
Hongguang Cui ◽  
Yang Liu ◽  
...  

Abstract Background Cassava is an important crop for food security and industry in the least-developed and developing countries. The completion of the cassava genome sequence and identification of large numbers of candidate genes by next-generation sequencing provide extensive resources for cassava molecular breeding and increase the need for rapid and efficient gene function analysis systems in cassava. Several plant virus-induced gene silencing (VIGS) systems have been developed as reverse genetic tools for rapid gene function analysis in cassava. However, these VIGS vectors could cause severe viral symptoms or inefficient gene silencing. Results In this study, we constructed agroinfection-compatible infectious cDNA clones of cassava common mosaic virus isolate CM (CsCMV-CM, genus Potexvirus, family Alphaflexiviridae) that causes systemic infection with mild symptoms in cassava. CsCMV-CM was then modified to a viral vector carrying the Nimble cloning frame, which facilitates the rapid and high-throughput cloning of silencing fragments into the viral genome. The CsCMV-based vector successfully silenced phytoene desaturase (PDS) and magnesium chelatase subunit I (ChlI) in different cassava varieties and Nicotiana benthamiana. The silencing of the ChlI gene could persist for more than two months. Conclusions This CsCMV-based VIGS system provides a new tool for rapid and efficient gene function studies in cassava.


Sign in / Sign up

Export Citation Format

Share Document