Process Parameters Effect on a Rectangular Tube Hydro-Forming with Magnesium Alloy

Author(s):  
S. Y. Lin ◽  
C. M. Chang ◽  
S. S. Chi
Author(s):  
A. Muniappan ◽  
Mantri Sriram ◽  
C. Thiagarajan ◽  
G. Bharathi Raja ◽  
T. Shaafi

2012 ◽  
Vol 217-219 ◽  
pp. 1928-1933
Author(s):  
Yu Cheng Zhang ◽  
Tian Yang Han ◽  
Zheng Yi Jiang ◽  
Dong Bin Wei

The process of twin-roll casting including pouring, solidifying, rolling and cooling can be accomplished in a very short time. Consequently, some important process parameters in the twin-roll casting that are difficult to be obtained in experiment can be acquired using numerical simulation. In this paper, a numerical simulation based on a 2D finite element model of vertical twin-roll strip casting of magnesium alloy has been conducted, and the thermal stress fields are significantly discussed. The influences of key process parameters consisting of submerged nozzle depth and nozzle spray angle have been studied. The thermal cracks on the surface of the strip are analysed according to the thermal stress distribution.


Author(s):  
Thomas Robinson ◽  
Malcolm Williams ◽  
Harish Rao ◽  
Ryan P. Kinser ◽  
Paul Allison ◽  
...  

Abstract In recent years, additive manufacturing (AM) has gained prominence in rapid prototyping and production of structural components with complex geometries. Magnesium alloys, whose strength-to-weight ratio is superior compared to steel and aluminum alloys, have shown potential in lightweighting applications. However, commercial beam-based AM technologies have limited success with magnesium alloys due to vaporization and hot cracking. Therefore, as an alternative approach, we propose the use of a near net-shape solid-state additive manufacturing process, Additive Friction Stir Deposition (AFSD), to fabricate magnesium alloys in bulk. In this study, a parametric investigation was performed to quantify the effect of process parameters on AFSD build quality including volumetric defects and surface quality in magnesium alloy AZ31B. In order to understand the effect of the AFSD process on structural integrity in the magnesium alloy AZ31B, in-depth microstructure and mechanical property characterization was conducted on a bulk AFSD build fabricated with a set of acceptable process parameters. Results of the microstructure analysis of the as-deposited AFSD build revealed bulk microstructure similar to wrought magnesium alloy AZ31 plate. Additionally, similar hardness measurements were found in AFSD build compared to control wrought specimens. While tensile test results of the as-deposited AFSD build exhibited a 20 percent drop in yield strength, nearly identical ultimate strength was observed compared to the wrought control. The experimental results of this study illustrate the potential of using the AFSD process to additively manufacture Mg alloys for load bearing structural components with achieving wrought-like microstructure and mechanical properties.


Sign in / Sign up

Export Citation Format

Share Document