Production Scheduling in Large-Scale Multistage Batch Process Industries

Author(s):  
Georgios M. Kopanos ◽  
Luis Puigjaner
Author(s):  
Ravinder Kumar ◽  
Mohammad Hossein Ahmadi ◽  
Dipen Kumar Rajak ◽  
Mohammad Alhuyi Nazari

Abstract Greenhouse gases emissions from large scale industries as well as gasoline based vehicles are mainly responsible for global warming since the 1980s. At present, it has triggered global efforts to reduce the level of GHG. The contribution of carbon dioxide (CO2) in polluting the environment is at a peak due to the excessive use of coal in power plants. So, serious attention is required to reduce the level of CO2 using advanced technologies. Carbon dioxide capture and storage may play an important role in this direction. In process industries, various carbon dioxide capture techniques can be used to reduce CO2 emissions. However, post-combustion carbon dioxide capture is on top priority. Nowadays the researcher is focusing their work on CO2 capture using hybrid solvent. This work highlights a review of carbon dioxide capture using various kind of hybrid solvent in a packed column. The various challenges for absorption efficiency enhancement and future direction are also discussed in the present work. It is concluded through the literature survey that hybrid solvent shows better efficiency in comparison to the aqueous solution used for CO2 capture.


2004 ◽  
Vol 126 (6) ◽  
pp. 877-885 ◽  
Author(s):  
Kenneth J. Bell

The design process for heat exchangers in the process industries and for similar applications in the power and large-scale environmental control industries is described. Because of the variety of substances (frequently multicomponent, of variable and uncertain composition, and changing phase) to be processed under wide ranges of temperatures, pressures, flow rates, chemical compatibility, and fouling propensity, these exchangers are almost always custom-designed and constructed. Many different exchanger configurations are commercially available to meet special conditions, with design procedures of varying degrees of reliability. A general design logic can be applied, with detailed procedures specific to the type of exchanger. The basis of the design process is first a careful and comprehensive specification of the range of conditions to be satisfied, and second, organized use of a fundamentally valid and extrapolatable rating method. The emphasis in choosing a design method is upon rational representation of the physical processes, rather than upon high accuracy. Finally, the resultant design must be vetted in detail by the designer and the process engineer for operability, flexibility, maintainability, and safety.


Sign in / Sign up

Export Citation Format

Share Document