2021 ◽  
Author(s):  
Bushra Amin ◽  
András Bárdossy

<p>This study is intended to carry out the spatial mapping with ordinary Kriging (OK) of regional point Intensity Duration Frequency (IDF) estimates for the sake of approximation and visualization at ungauged location. Precipitation IDF estimates that offer us valuable information about the frequency of occurrence of extreme events corresponding to different durations and intensities are derived through the application of robust and efficient regional frequency analysis (RFA) based on L-moment algorithm. IDF curves for Baden Wrttemberg (BW) are obtained from the long historical record of daily and hourly annual maximum precipitation series (AMS) provided by German Weather Service from 1960-2020 and 1949-2020 respectively under the assumption of stationarity. One of the widely used Gumbel (type 1)  distribution is applied for IDF analysis because of its suitability for modeling maxima. The uncertainty in IDF curves is determined by the bootstrap method and are revealed in the form of the prediction and confidence interval for each specific time duration on graph. Five metrics such as root mean square error (RMSE), coefficient of determination (R²), mean square error (MSE), Akaike information criteria (AIC) and Bayesian information criteria (BIC) are used to assess the performance of the employed IDF equation. The coefficients of 3-parameteric non-linear IDF equation is determined for various recurrence interval by means of Levenberg–Marquardt algorithm (LMA), also referred to as damped least square (DLS) method. The estimated coefficients vary from location to location but are insensitive to duration. After successfully determining the IDF parameters for the same return period, parametric contour or isopluvial maps can be generated using OK as an interpolation tool with the intention to provide estimates at ungauged locations. These estimated regional coefficients of IDF curve are then fed to the empirical intensity frequency equation that may serve to estimate rainfall intensity for design purposes for all ungauged sites. The outcomes of this research contribute to the construction of IDF-based design criteria for water projects in ungauged sites located anywhere in the state of BW.</p><p>In conclusion, we conducted IDF analysis for the entire state of BW as it is considered to be more demanding due to the increased impact of climate change on the intensification of hydrological cycle as well as the expansion of urban areas rendering watershed less penetrable to rainfall and run-off, the better understanding of spatial heterogeneity of intense rainfall patterns for the proposed domain.</p>


2021 ◽  
Author(s):  
Felix Fauer ◽  
Jana Ulrich ◽  
Oscar E. Jurado ◽  
Uwe Ulbrich ◽  
Henning W. Rust

<p>Intensity-Duration-Frequency (IDF) curves describe the main statistical characteristics of extreme precipitation events. Providing information on the exceedance probability or return period of certain precipitation intensities for a range of durations, IDF curves are an important tool for the design of hydrological structures.</p><p>Although the Generalized-Extreme-Value (GEV) distribution is an adequate model for annual precipitation maxima of a certain duration, the core problem of extreme value statistics remains: the limited data availability. Hence, it is reasonable to use a model that can describe all durations simultaneously. This reduces the total number of parameters and a more efficient usage of data is achieved. The idea of implementing a duration dependence directly into the parameters of the extreme value distribution and therefore obtaining a single distribution for a range of durations was proposed by Koutsoyiannis et al. (1998). However, while the use of the GEV is justified by a strong theoretical basis, only empirical models exist for the dependence of the parameters on duration.</p><p>In this study, we compare different models regarding the dependence of the GEV parameters on duration with the aim of finding a model for a wide duration range (1 min - 5 days). We use a combination of existing model features, especially curvature for small durations and multi-scaling for all durations, and extend them by a new feature that allows flattening of the IDF curves for long durations. Using the quantile score in a cross-validation setting, we provide detailed information on the duration and probability ranges for which specific features or a systematic combination of features lead to improved modeling skill.</p><p>Our results show that allowing curvature or multi-scaling improves the model only for very short or long durations, respectively, but leads to disadvantages in modeling the other duration ranges. In contrast, allowing flattening of the IDF curves leads to an improvement for medium durations between 1 hour and 1 day without affecting other duration regimes.</p>


2004 ◽  
Vol 4 (3) ◽  
pp. 375-387 ◽  
Author(s):  
B. Mohymont ◽  
G. R. Demarée ◽  
D. N. Faka

Abstract. The establishment of Intensity-Duration-Frequency (IDF) curves for precipitation remains a powerful tool in the risk analysis of natural hazards. Indeed the IDF-curves allow for the estimation of the return period of an observed rainfall event or conversely of the rainfall amount corresponding to a given return period for different aggregation times. There is a high need for IDF-curves in the tropical region of Central Africa but unfortunately the adequate long-term data sets are frequently not available. The present paper assesses IDF-curves for precipitation for three stations in Central Africa. More physically based models for the IDF-curves are proposed. The methodology used here has been advanced by Koutsoyiannis et al. (1998) and an inter-station and inter-technique comparison is being carried out. The IDF-curves for tropical Central Africa are an interesting tool to be used in sewer system design to combat the frequently occurring inundations in semi-urbanized and urbanized areas of the Kinshasa megapolis.


Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1735 ◽  
Author(s):  
Julia Lutz ◽  
Lars Grinde ◽  
Anita Verpe Dyrrdal

Due to its location, its old sewage system, and the channelling of rivers, Oslo is highly exposed to urban flooding. Thus, it is crucial to provide relevant and reliable information on extreme precipitation in the planning and design of infrastructure. Intensity-Duration-Frequency (IDF) curves are a frequently used tool for that purpose. However, the computational method for IDF curves in Norway was established over 45 years ago, and has not been further developed since. In our study, we show that the current method of fitting a Gumbel distribution to the highest precipitation events is not able to reflect the return values for the long return periods. Instead, we introduce the fitting of a Generalised Extreme Value (GEV) distribution for annual maximum precipitation in two different ways, using (a) a modified Maximum Likelihood estimation and (b) Bayesian inference. The comparison of the two methods for 14 stations in and around Oslo reveals that the estimated median return values are very similar, but the Bayesian method provides upper credible interval boundaries that are considerably higher. Two different goodness-of-fit tests favour the Bayesian method; thus, we suggest using the Bayesian inference for estimating IDF curves for the Oslo area.


Hydrology ◽  
2018 ◽  
Vol 5 (3) ◽  
pp. 33 ◽  
Author(s):  
Nguyen Tien Thanh ◽  
Luca Dutto Aldo Remo

In future years, extreme weather events are expected to frequently increase due to climate change, especially in the combination of climate change and events of El Niño–Southern Oscillation. This pays special attention to the construction of intensity–duration–frequency (IDF) curves at a tempo-spatial scale of sub-daily and sub-grid under a context of climate change. The reason for this is that IDF curves represent essential means to study effects on the performance of drainage systems, damps, dikes and reservoirs. Therefore, the objective of this study is to present an approach to construct future IDF curves with high temporo-spatial resolutions under climate change in central Vietnam, using the case of VuGia-ThuBon. The climate data of historical and future from a regional climate model RegCM4 forced by three global models MPI-ESM-MR, IPSL-CM5A-LR and ICHEC-EC-EARTH are used to re-grid the resolution of 10 km × 10 km grid spacing from 25 km × 25 km on the base of bilinear interpolation. A bias correction method is then applied to the finest resolution of a hydrostatic climate model for an ensemble of simulations. Furthermore, the IDF curves for short durations of precipitation are constructed for the historical climate and future climates under two representative concentration pathway (RCP) scenarios, RCP4.5 and RCP8.5, based on terms of correlation factors. The major findings show that the projected precipitation changes are expected to significantly increase by about 10 to 30% under the scenarios of RCP4.5 and RCP8.5. The projected changes of a maximum of 1-, 2-, and 3-days precipitation are expected to increase by about 30–300 mm/day. More importantly, for all return periods (i.e., 10, 20, 50, 100, and 200 years), IDF curves completely constructed for short durations of precipitation at sub-daily show an increase in intensities for the RCP4.5 and RCP8.5 scenarios.


Sign in / Sign up

Export Citation Format

Share Document