Application of Machine Learning Techniques in Clinical Information Extraction

Author(s):  
Ruchi Patel ◽  
Sanjay Tanwani
Author(s):  
SANDA M. HARABAGIU

This paper presents a novel methodology of disambiguating prepositional phrase attachments. We create patterns of attachments by classifying a collection of prepositional relations derived from Treebank parses. As a by-product, the arguments of every prepositional relation are semantically disambiguated. Attachment decisions are generated as the result of a learning process, that builds upon some of the most popular current statistical and machine learning techniques. We have tested this methodology on (1) Wall Street Journal articles, (2) textual definitions of concepts from a dictionary and (3) an ad hoc corpus of Web documents, used for conceptual indexing and information extraction.


2020 ◽  
Vol 04 (01) ◽  
pp. 073-081
Author(s):  
Nikitha Murali ◽  
Ahmet Kucukkaya ◽  
Alexandra Petukhova ◽  
John Onofrey ◽  
Julius Chapiro

AbstractThe widespread adoption of electronic health records has resulted in an abundance of imaging and clinical information. New data-processing technologies have the potential to revolutionize the practice of medicine by deriving clinically meaningful insights from large-volume data. Among those techniques is supervised machine learning, the study of computer algorithms that use self-improving models that learn from labeled data to solve problems. One clinical area of application for supervised machine learning is within oncology, where machine learning has been used for cancer diagnosis, staging, and prognostication. This review describes a framework to aid clinicians in understanding and critically evaluating studies applying supervised machine learning methods. Additionally, we describe current studies applying supervised machine learning techniques to the diagnosis, prognostication, and treatment of cancer, with a focus on gastroenterological cancers and other related pathologies.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Abdul Wahab Muzaffar ◽  
Farooque Azam ◽  
Usman Qamar

The information extraction from unstructured text segments is a complex task. Although manual information extraction often produces the best results, it is harder to manage biomedical data extraction manually because of the exponential increase in data size. Thus, there is a need for automatic tools and techniques for information extraction in biomedical text mining. Relation extraction is a significant area under biomedical information extraction that has gained much importance in the last two decades. A lot of work has been done on biomedical relation extraction focusing on rule-based and machine learning techniques. In the last decade, the focus has changed to hybrid approaches showing better results. This research presents a hybrid feature set for classification of relations between biomedical entities. The main contribution of this research is done in the semantic feature set where verb phrases are ranked using Unified Medical Language System (UMLS) and a ranking algorithm. Support Vector Machine and Naïve Bayes, the two effective machine learning techniques, are used to classify these relations. Our approach has been validated on the standard biomedical text corpus obtained from MEDLINE 2001. Conclusively, it can be articulated that our framework outperforms all state-of-the-art approaches used for relation extraction on the same corpus.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Muhammad Bilal Butt ◽  
Majed Alfayad ◽  
Shazia Saqib ◽  
M. A. Khan ◽  
Munir Ahmad ◽  
...  

Hepatitis C is a prevalent disease in the world. Around 3 to 4 million new cases of Hepatitis C are reported every year across the globe. Effective, timely prediction of the disease can help people know about their Stage of Hepatitis C. To identify the Stage of disease, various noninvasive serum biochemical markers and clinical information of the patients have been used. Machine learning techniques have been an effective alternative tool for determining the Stage of this chronic disease of the liver to prevent biopsy side effects. In this study, an Intelligent Hepatitis C Stage Diagnosis System (IHSDS) empowered with machine learning is presented to predict the Stage of Hepatitis C in a human using Artificial Neural Network (ANN). The dataset obtained from the UCI machine learning repository contains 29 features, out of which the 19 most reverent are selected to conduct the study; 70% of the dataset is used for training and 30% for validation purposes. The precision value is compared with the proposed IHSDS with previously presented models. The proposed IHSDS has achieved 98.89% precision during training and 94.44% precision during validation.


2006 ◽  
Author(s):  
Christopher Schreiner ◽  
Kari Torkkola ◽  
Mike Gardner ◽  
Keshu Zhang

2020 ◽  
Vol 12 (2) ◽  
pp. 84-99
Author(s):  
Li-Pang Chen

In this paper, we investigate analysis and prediction of the time-dependent data. We focus our attention on four different stocks are selected from Yahoo Finance historical database. To build up models and predict the future stock price, we consider three different machine learning techniques including Long Short-Term Memory (LSTM), Convolutional Neural Networks (CNN) and Support Vector Regression (SVR). By treating close price, open price, daily low, daily high, adjusted close price, and volume of trades as predictors in machine learning methods, it can be shown that the prediction accuracy is improved.


Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 389-P
Author(s):  
SATORU KODAMA ◽  
MAYUKO H. YAMADA ◽  
YUTA YAGUCHI ◽  
MASARU KITAZAWA ◽  
MASANORI KANEKO ◽  
...  

Author(s):  
Anantvir Singh Romana

Accurate diagnostic detection of the disease in a patient is critical and may alter the subsequent treatment and increase the chances of survival rate. Machine learning techniques have been instrumental in disease detection and are currently being used in various classification problems due to their accurate prediction performance. Various techniques may provide different desired accuracies and it is therefore imperative to use the most suitable method which provides the best desired results. This research seeks to provide comparative analysis of Support Vector Machine, Naïve bayes, J48 Decision Tree and neural network classifiers breast cancer and diabetes datsets.


Sign in / Sign up

Export Citation Format

Share Document