PATTERNS OF PREPOSITIONAL ATTACHMENTS — WHERE DICTIONARY SEMANTICS MEETS CORPUS STATISTICS

Author(s):  
SANDA M. HARABAGIU

This paper presents a novel methodology of disambiguating prepositional phrase attachments. We create patterns of attachments by classifying a collection of prepositional relations derived from Treebank parses. As a by-product, the arguments of every prepositional relation are semantically disambiguated. Attachment decisions are generated as the result of a learning process, that builds upon some of the most popular current statistical and machine learning techniques. We have tested this methodology on (1) Wall Street Journal articles, (2) textual definitions of concepts from a dictionary and (3) an ad hoc corpus of Web documents, used for conceptual indexing and information extraction.

2020 ◽  
Vol 69 ◽  
pp. 765-806
Author(s):  
Senka Krivic ◽  
Michael Cashmore ◽  
Daniele Magazzeni ◽  
Sandor Szedmak ◽  
Justus Piater

We present a novel approach for decreasing state uncertainty in planning prior to solving the planning problem. This is done by making predictions about the state based on currently known information, using machine learning techniques. For domains where uncertainty is high, we define an active learning process for identifying which information, once sensed, will best improve the accuracy of predictions. We demonstrate that an agent is able to solve problems with uncertainties in the state with less planning effort compared to standard planning techniques. Moreover, agents can solve problems for which they could not find valid plans without using predictions. Experimental results also demonstrate that using our active learning process for identifying information to be sensed leads to gathering information that improves the prediction process.


Machine learning Has performed a essential position within the estimation of crop yield for both farmers and consumers of the products. Machine learning techniques learn from data set related to the environment on which the estimations and estimation are to be made and the outcome of the learning process are used by farmers for corrective measures for yield optimization. This paper we explore various ML techniques utilized in crop yield estimation and provide the detailed analysis of accuracy of the techniques.


Author(s):  
Fiorella Mete ◽  
David J. Corr ◽  
Michael P. Wilbur ◽  
Ying Chen

Collecting information on heavy trucks and monitoring the bridges which they regularly cross is important for many facets of infrastructure management. In this paper, a two-step algorithm is developed using bridge and truck data, by deploying sequentially unsupervised and supervised machine learning techniques. Longitudinal clustering of bridge data, concerning strain waveforms, is adopted to perform the first step of the algorithm, while image visual inspection and classification tree methods are applied to truck data concurrently in the second step. Both bridge and truck traffic must be monitored for a limited, yet significant, amount of time to calibrate the algorithm, which is then used to build a classification framework. The framework provides the same benefits of two data collection systems while only one needs to be operative. Depending on which monitoring system remains available, the framework enables the use of bridge data to identify the truck’s profile which generated it, or to estimate bridge response given the truck’s information. As a result, the present study aims to provide decision-makers with an effective way to monitor the whole bridge-traffic system, bridge managers to plan effective maintenance, and policymakers to develop ad hoc regulations.


Author(s):  
Neha Vaishnavi Sharma ◽  
Narendra Singh Yadav

As the circumstances are changing, mankind has turned out to be more inclined to snappy and speedier correspondence and access to information. The correspondence happens in numerous structures (e.g., presently, this correspondence is all the more a virtual substance than a physical one). So as to keep up fast correspondence, the coming age will depend on exceptionally tried and true, canny and self-learning/self-modifying correspondence organizers. In this context, this chapter reviews the most important machine learning techniques with the direct applicability in wireless ad-hoc systems. A guide of machine learning methods and their relevance is also provided. Different applications of ad-hoc wireless networks are discussed in terms of energy-aware communications, optimal node deployment and localization, resource allocation, and scheduling.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Abdul Wahab Muzaffar ◽  
Farooque Azam ◽  
Usman Qamar

The information extraction from unstructured text segments is a complex task. Although manual information extraction often produces the best results, it is harder to manage biomedical data extraction manually because of the exponential increase in data size. Thus, there is a need for automatic tools and techniques for information extraction in biomedical text mining. Relation extraction is a significant area under biomedical information extraction that has gained much importance in the last two decades. A lot of work has been done on biomedical relation extraction focusing on rule-based and machine learning techniques. In the last decade, the focus has changed to hybrid approaches showing better results. This research presents a hybrid feature set for classification of relations between biomedical entities. The main contribution of this research is done in the semantic feature set where verb phrases are ranked using Unified Medical Language System (UMLS) and a ranking algorithm. Support Vector Machine and Naïve Bayes, the two effective machine learning techniques, are used to classify these relations. Our approach has been validated on the standard biomedical text corpus obtained from MEDLINE 2001. Conclusively, it can be articulated that our framework outperforms all state-of-the-art approaches used for relation extraction on the same corpus.


Author(s):  
Neha Vaishnavi Sharma ◽  
Narendra Singh Yadav

As the circumstances are changing, mankind has turned out to be more inclined to snappy and speedier correspondence and access to information. The correspondence happens in numerous structures (e.g., presently, this correspondence is all the more a virtual substance than a physical one). So as to keep up fast correspondence, the coming age will depend on exceptionally tried and true, canny and self-learning/self-modifying correspondence organizers. In this context, this chapter reviews the most important machine learning techniques with the direct applicability in wireless ad-hoc systems. A guide of machine learning methods and their relevance is also provided. Different applications of ad-hoc wireless networks are discussed in terms of energy-aware communications, optimal node deployment and localization, resource allocation, and scheduling.


Sign in / Sign up

Export Citation Format

Share Document