A High Payload Edge Detection-Based Image Steganography Robust to RS-Attack by Using LSB Substitution and Pixel Value Differencing

Author(s):  
Chin-Feng Lee ◽  
Jau-Ji Shen ◽  
Ting-Yi Ou-Yang
2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Anita Pradhan ◽  
K. Raja Sekhar ◽  
Gandharba Swain

To protect from pixel difference histogram (PDH) analysis and RS analysis, two hybrid image steganography techniques by appropriate combination of LSB substitution, pixel value differencing (PVD), and exploiting modification directions (EMD) have been proposed in this paper. The cover image is traversed in raster scan order and partitioned into blocks. The first technique operates on 2 × 2 pixel blocks and the second technique operates on 3 × 3 pixel blocks. For each block, the average pixel value difference, d, is calculated. If d value is greater than 15, the block is in an edge area, so a combination of LSB substitution and PVD is applied. If d value is less than or equal to 15, the block is in a smooth area, so a combination of LSB substitution and EMD is applied. Each of these two techniques exists in two variants (Type 1 and Type 2) with respect to two different range tables. The hiding capacities and PSNR of both the techniques are found to be improved. The results from experiments prove that PDH analysis and RS analysis cannot detect these proposed techniques.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Gandharba Swain

The combination of pixel value differencing (PVD) and least significant bit (LSB) substitution gives higher capacity and lesser distortion. However, there are three issues to be taken into account: (i) fall off boundary problem (FOBP), (ii) pixel difference histogram (PDH) analysis, and (iii) RS analysis. This paper proposes a steganography technique in two variants using combination of modified LSB substitution and PVD by taking care of these three issues. The first variant operates on 2 × 3 pixel blocks and the second technique operates on 3 × 3 pixel blocks. In one of the pixels of a block, embedding is performed using modified LSB substitution. Based on the new value of this pixel, difference values with other neighboring pixels are calculated. Using these differences, PVD approach is applied. The edges in multiple directions are exploited, so PDH analysis cannot detect this steganography. The LSB substitution is performed in only one pixel of the block, so RS analysis also cannot detect this steganography. To address the FOBP, suitable equations are used during embedding procedure. The experimental results such as bit rate and distortion measure are satisfactory.


Author(s):  
Meenakshi S Arya ◽  
Meenu Rani ◽  
Charndeep Singh Bedi

<p>With the intrusion of internet into the lives of every household and terabytes of data being transmitted over the internet on daily basis, the protection of content being transmitted over the internet has become an extremely serious concern. Various measures and methods are being researched and devised everyday to ensure content protection of digital media. To address this issue of content protection, this paper proposes an RGB image steganography based on sixteen-pixel differencing with n-bit Least Significant Bit (LSB) substitution. The proposed technique provides higher embedding capacity without sacrificing the imperceptibility of the host data. The image is divided into 4×4 non overlapping blocks and in each block the average difference value is calculated. Based on this value the block is classified to fall into one of four levels such as, lower, lower-middle, higher-middle and higher. If block belongs to lower level then 2-bit LSB substitution is used in it. Similarly, for lower-middle, higher-middle and higher level blocks 3, 4, and 5 bit LSB substitution is used. In our proposed method there is no need of pixel value readjustment for minimizing distortion. The experimental results show that stego-images are imperceptible and have huge hiding capacity.</p>


Author(s):  
Meenakshi S Arya ◽  
Meenu Rani ◽  
Charndeep Singh Bedi

<p>With the intrusion of internet into the lives of every household and terabytes of data being transmitted over the internet on daily basis, the protection of content being transmitted over the internet has become an extremely serious concern. Various measures and methods are being researched and devised everyday to ensure content protection of digital media. To address this issue of content protection, this paper proposes an RGB image steganography based on sixteen-pixel differencing with n-bit Least Significant Bit (LSB) substitution. The proposed technique provides higher embedding capacity without sacrificing the imperceptibility of the host data. The image is divided into 4×4 non overlapping blocks and in each block the average difference value is calculated. Based on this value the block is classified to fall into one of four levels such as, lower, lower-middle, higher-middle and higher. If block belongs to lower level then 2-bit LSB substitution is used in it. Similarly, for lower-middle, higher-middle and higher level blocks 3, 4, and 5 bit LSB substitution is used. In our proposed method there is no need of pixel value readjustment for minimizing distortion. The experimental results show that stego-images are imperceptible and have huge hiding capacity.</p>


Author(s):  
Oluwaseun M. Alade ◽  
Elizabeth A. Amusan ◽  
Oluyinka T. Adedeji ◽  
Oluwaseun O. Alo

Steganography deals with the ways of hiding communicated data in such a way that it remains confidential. Finding best position inside cover image to embed text message, maintaining a reasonable trade-off between security, robustness, higher bit embedding rate and imperceptibility are some of the challenges of steganography system. Hence, this paper presents firefly algorithm for finding best positions inside cover image in order to embed text message into cover image using Pixel Value Differencing (PVD) technique. Four different cover image was used. Experimental result showed the cover image with selected location using firefly algorithm as well as the stego image using PVD technique. The stego image was evaluated using Peak Signal to Noise Ratio (PSNR) and Mean square Error (MSE).  Firefly Algorithm with PVD technique produced a promising result for image steganography.


2014 ◽  
Vol 8 (2) ◽  
pp. 55-68 ◽  
Author(s):  
Vinay Kumar ◽  
Abhishek Bansal ◽  
Sunil Kumar Muttoo

Data hiding is an emerging field of research for secure data transmission over internet, ensuring ownership identification and copyright protection. A couple of techniques have been proposed based on pixel value differencing (PVD) and eight queens' solutions. In this paper, a new data hiding method based on inter-block difference in eight queen's solutions is presented. The result of inter-block difference is XORED with ASCII code of character from the message and the resultant value is embedded in LSB position. The presented approach is more efficient and it provides a more capacity with good imperceptibility. The approach supports different digital image file formats such as bmp, png and tiff.


Sign in / Sign up

Export Citation Format

Share Document