scholarly journals Image Steganography Using Pixel Value Differencing (PVD) Technique Based on Firefly Algorithm

Author(s):  
Oluwaseun M. Alade ◽  
Elizabeth A. Amusan ◽  
Oluyinka T. Adedeji ◽  
Oluwaseun O. Alo

Steganography deals with the ways of hiding communicated data in such a way that it remains confidential. Finding best position inside cover image to embed text message, maintaining a reasonable trade-off between security, robustness, higher bit embedding rate and imperceptibility are some of the challenges of steganography system. Hence, this paper presents firefly algorithm for finding best positions inside cover image in order to embed text message into cover image using Pixel Value Differencing (PVD) technique. Four different cover image was used. Experimental result showed the cover image with selected location using firefly algorithm as well as the stego image using PVD technique. The stego image was evaluated using Peak Signal to Noise Ratio (PSNR) and Mean square Error (MSE).  Firefly Algorithm with PVD technique produced a promising result for image steganography.


Author(s):  
Balkar Singh

In this paper, a novel image steganography approach is proposed to enhance the visual quality of stego image. The cover image is decomposed using Discrete Wavelet Transform (DWT) to produce wavelet subbands and threshold value is calculated for each higher frequency wavelet subbands. Wavelet coefficients having magnitude larger than the threshold of its subband are selected to embed the secret data. Semi Hexadecimal Code (SHC) is proposed to convert pixel value of secret image into smaller equivalent value so that it distorts stego image as less as possible. Experimental results shows that maximum PSNR between cover image and stego image is more than 75 dB .Proposed approach is also compared with the existing approaches and this comparison shows that the proposed approach is better than the existing approaches. 



2021 ◽  
Author(s):  
Nandhini Subramanian ◽  
, Jayakanth Kunhoth ◽  
Somaya Al-Maadeed ◽  
Ahmed Bouridane

COVID pandemic has necessitated the need for virtual and online health care systems to avoid contacts. The transfer of sensitive medical information including the chest and lung X-ray happens through untrusted channels making it prone to many possible attacks. This paper aims to secure the medical data of the patients using image steganography when transferring through untrusted channels. A deep learning method with three parts is proposed – preprocessing module, embedding network and the extraction network. Features from the cover image and the secret image are extracted by the preprocessing module. The merged features from the preprocessing module are used to output the stego image by the embedding network. The stego image is given as the input to the extraction network to extract the ingrained secret image. Mean Squared Error (MSE) and Peak Signal-to-Noise Ratio (PSNR) are the evaluation metrics used. Higher PSNR value proves the higher security; robustness of the method and the image results show the higher imperceptibility. The hiding capacity of the proposed method is 100% since the cover image and the secret image are of the same size.



Author(s):  
Ladeh S. Abdulraman ◽  
Sheerko R. Hma Salah ◽  
Halgurd S. Maghdid ◽  
Azhin T. Sabir

Steganography is a way to convey secret communication, with rapid electronic communication and high demand of using the internet, steganography has become a wide field of research and discussion. In this paper a new approach for hiding information in cover image proposed in spatial domain, the proposed approach divides the host image into blocks of size (8x8) pixels and message bits are embeds into the pixels of a cover image. The 64-pixel values of each block converted to be represented in binary system and compared with corresponding secret data bits for finding the matching and hold 6-pixels. The search process performed by comparing each secret data bit (8-bits) with created binary plane at the cover image, if matching is found the last row of the created binary plane which is (LSB) is modified to indicate the location of the matched bits sequence “which is the secret data” and number of the row, if matching is not found in all 7th rows the secret sequence is copied in to the corresponding 8th row location.The payload of this technique is 6 pixels’ message (48-bits) in each block. In the experiments secret messages are randomly embedded into different images. The quality of the stego-image from which the original text message is extracted is not affected at all. For validation of the presented mechanism, the capacity, the circuit complexity, and the measurement of distortion against steganalysis is evaluated using the peak-signal-to-noise ratio (PSNR) are analyzed.



Author(s):  
Jayeeta Majumder ◽  
Chittaranjan Pradhan

Steganography is the popular security method that provides complete security for communicating secret details. Image steganography is a very interesting field because of the imperceptible way of hiding data in images, since small distortion in the images cannot be identified by a human eye. This is the main idea to develop image steganography algorithms to improve visual quality. Pixel Value Differencing is able to provide a high quality stego image in spite of the high capacity of the concealed information. This paper proposes the first the interpolation techniques with the pixel block then applying then the Pixel Value Differencing method. Here in the first phase the original image is portioned into 2X2 block then applying the nearest neighbour interpolation technique after that in the second phase PVD is used to embed the secret data. Then the new pixel value of the neighbouring pixel also calculated. In this paper one variant are proposed by using single range table. We observed that for both the variant PSNR value and the hiding capacity are increased.



2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Jia Luo ◽  
Ri-Gui Zhou ◽  
GaoFeng Luo ◽  
YaoChong Li ◽  
GuangZhong Liu

Abstract A novel and traceable quantum steganography scheme based on pixel value differencing (PVD) is proposed. In the proposed scheme, a quantum cover image is divided into non-overlapping blocks of two consecutive pixels. Then, by a series of reversible logic circuits, we calculate the difference value based on the values of the two pixels in each block and classify it as one of a set of continuous ranges. The secret image and operator information are embedded in the cover image by using the new obtained difference value to replace the original one. The number of bits of secret image that can be embedded in a block is determined, and the number of bits of operator information is decided by the range of the difference value belongs to. Moreover, when the embedded data is extracted from a stego image, it is not necessary to refer to the original cover image. The performance of the proposed scheme is based on the analysis of several categories of simulation results, such as visual quality, capacity, and robustness.



2017 ◽  
Vol 4 (4) ◽  
pp. 161066 ◽  
Author(s):  
Shiv Prasad ◽  
Arup Kumar Pal

This paper presents a steganographic scheme based on the RGB colour cover image. The secret message bits are embedded into each colour pixel sequentially by the pixel-value differencing (PVD) technique. PVD basically works on two consecutive non-overlapping components; as a result, the straightforward conventional PVD technique is not applicable to embed the secret message bits into a colour pixel, since a colour pixel consists of three colour components, i.e. red, green and blue. Hence, in the proposed scheme, initially the three colour components are represented into two overlapping blocks like the combination of red and green colour components, while another one is the combination of green and blue colour components, respectively. Later, the PVD technique is employed on each block independently to embed the secret data. The two overlapping blocks are readjusted to attain the modified three colour components. The notion of overlapping blocks has improved the embedding capacity of the cover image. The scheme has been tested on a set of colour images and satisfactory results have been achieved in terms of embedding capacity and upholding the acceptable visual quality of the stego-image.



Image steganography is a technique that is used to hide information. The information can be of various types like image, video, or audio. Steganography is done so that no one apart from the correct receiver can retrieve the information. This paper consists of all advantages and highlights of the wavelet transform but with the additional features like randomness and some default values that are already built-in it. Various algorithms can be used in steganography and they provide good hiding capacity and low detectability. Here we have hidden the image into the cover image using Integer Wavelet Transform (IWT) and also using Discrete Wavelet Transform (DWT) and compared which technique gives better results. It is very difficult to predict the presence of a hidden image inside the stego image since it looks exactly like the cover image. There is no loss in quality from the secret image to the extracted image since the PSNR (Peak Signal to noise ratio) is high for both of them. This process was done using both DWT and IWT and the results prove that that the IWT technique is not only simpler but also more efficient than the DWT technique since it gives higher PSNR values. Through the proposed algorithm, an increase in the strength and imperceptibility is noticed and it can also maintain various transformations such as scaling, translation, and rotation with algorithms that already exist. The final results, after comparing both the transforms prove that the algorithm which is being proposed in IWT is indeed effective







Sign in / Sign up

Export Citation Format

Share Document