scholarly journals Some Algebraic and Arithmetic Properties of Feynman Diagrams

Author(s):  
Yajun Zhou
2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Neelima Agarwal ◽  
Lorenzo Magnea ◽  
Sourav Pal ◽  
Anurag Tripathi

Abstract Correlators of Wilson-line operators in non-abelian gauge theories are known to exponentiate, and their logarithms can be organised in terms of collections of Feynman diagrams called webs. In [1] we introduced the concept of Cweb, or correlator web, which is a set of skeleton diagrams built with connected gluon correlators, and we computed the mixing matrices for all Cwebs connecting four or five Wilson lines at four loops. Here we complete the evaluation of four-loop mixing matrices, presenting the results for all Cwebs connecting two and three Wilson lines. We observe that the conjuctured column sum rule is obeyed by all the mixing matrices that appear at four-loops. We also show how low-dimensional mixing matrices can be uniquely determined from their known combinatorial properties, and provide some all-order results for selected classes of mixing matrices. Our results complete the required colour building blocks for the calculation of the soft anomalous dimension matrix at four-loop order.


2021 ◽  
Vol 71 (1) ◽  
pp. 251-263
Author(s):  
Guillermo Mantilla-Soler

Abstract Let L be a number field. For a given prime p, we define integers α p L $ \alpha_{p}^{L} $ and β p L $ \beta_{p}^{L} $ with some interesting arithmetic properties. For instance, β p L $ \beta_{p}^{L} $ is equal to 1 whenever p does not ramify in L and α p L $ \alpha_{p}^{L} $ is divisible by p whenever p is wildly ramified in L. The aforementioned properties, although interesting, follow easily from definitions; however a more interesting application of these invariants is the fact that they completely characterize the Dedekind zeta function of L. Moreover, if the residue class mod p of α p L $ \alpha_{p}^{L} $ is not zero for all p then such residues determine the genus of the integral trace.


2021 ◽  
Vol 111 (1) ◽  
Author(s):  
H. W. Braden

AbstractSome arithmetic properties of spectral curves are discussed: the spectral curve, for example, of a charge $$n\ge 2$$ n ≥ 2 Euclidean BPS monopole is not defined over $$\overline{\mathbb {Q}}$$ Q ¯ if smooth.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Ryuichiro Kitano ◽  
Hiromasa Takaura ◽  
Shoji Hashimoto

Abstract We perform a numerical computation of the anomalous magnetic moment (g − 2) of the electron in QED by using the stochastic perturbation theory. Formulating QED on the lattice, we develop a method to calculate the coefficients of the perturbative series of g − 2 without the use of the Feynman diagrams. We demonstrate the feasibility of the method by performing a computation up to the α3 order and compare with the known results. This program provides us with a totally independent check of the results obtained by the Feynman diagrams and will be useful for the estimations of not-yet-calculated higher order values. This work provides an example of the application of the numerical stochastic perturbation theory to physical quantities, for which the external states have to be taken on-shell.


Author(s):  
Julio F. Acosta ◽  
Victor H. Andaluz ◽  
Mauricio X. Naranjo ◽  
Jose I. Molina ◽  
Alex Santana G. ◽  
...  

2017 ◽  
Vol 39 (2) ◽  
pp. 46-54 ◽  
Author(s):  
Michael Stöltzner
Keyword(s):  

1998 ◽  
Vol 07 (01) ◽  
pp. 61-85 ◽  
Author(s):  
Dirk Kreimer

We find that the overall UV divergences of a renormalizable field theory with trivalent vertices fulfil a four-term relation. They thus come close to establish a weight system. This provides a first explanation of the recent successful association of renormalization theory with knot theory.


Sign in / Sign up

Export Citation Format

Share Document