Transplantation Immunology: Retinal Cell-Based Therapy

Author(s):  
Harpal Sandhu ◽  
Janelle M. F. Adeniran ◽  
Henry J. Kaplan
2017 ◽  
Vol 2017 ◽  
pp. 1-19 ◽  
Author(s):  
Tai-Chi Lin ◽  
Magdalene J. Seiler ◽  
Danhong Zhu ◽  
Paulo Falabella ◽  
David R. Hinton ◽  
...  

Dysfunction and death of retinal pigment epithelium (RPE) and or photoreceptors can lead to irreversible vision loss. The eye represents an ideal microenvironment for stem cell-based therapy. It is considered an “immune privileged” site, and the number of cells needed for therapy is relatively low for the area of focused vision (macula). Further, surgical placement of stem cell-derived grafts (RPE, retinal progenitors, and photoreceptor precursors) into the vitreous cavity or subretinal space has been well established. For preclinical tests, assessments of stem cell-derived graft survival and functionality are conducted in animal models by various noninvasive approaches and imaging modalities.In vivoexperiments conducted in animal models based on replacing photoreceptors and/or RPE cells have shown survival and functionality of the transplanted cells, rescue of the host retina, and improvement of visual function. Based on the positive results obtained from these animal experiments, human clinical trials are being initiated. Despite such progress in stem cell research, ethical, regulatory, safety, and technical difficulties still remain a challenge for the transformation of this technique into a standard clinical approach. In this review, the current status of preclinical safety and efficacy studies for retinal cell replacement therapies conducted in animal models will be discussed.


Author(s):  
Glenn M. Cohen ◽  
Radharaman Ray

Retinal,cell aggregates develop in culture in a pattern similar to the in ovo retina, forming neurites first and then synapses. In the present study, we continuously exposed chick retinal cell aggregates to a high concentration (1 mM) of carbamylcholine (carbachol), an acetylcholine (ACh) analog that resists hydrolysis by acetylcholinesterase (AChE). This situation is similar to organophosphorus anticholinesterase poisoning in which the ACh level is elevated at synaptic junctions due to inhibition of AChE, Our objective was to determine whether continuous carbachol exposure either damaged cholino- ceptive neurites, cell bodies, and synaptic elements of the aggregates or influenced (hastened or retarded) their development.The retinal tissue was isolated aseptically from 11 day embryonic White Leghorn chicks and then enzymatically (trypsin) and mechanically (trituration) dissociated into single cells. After washing the cells by repeated suspension and low (about 200 x G) centrifugation twice, aggregate cell cultures (about l0 cells/culture) were initiated in 1.5 ml medium (BME, GIBCO) in 35 mm sterile culture dishes and maintained as experimental (containing 10-3 M carbachol) and control specimens.


2020 ◽  
Vol 26 (40) ◽  
pp. 5089-5099 ◽  
Author(s):  
Irene Simonetta ◽  
Antonino Tuttolomondo ◽  
Mario Daidone ◽  
Salvatore Miceli ◽  
Antonio Pinto

: Fabry disease is an X-linked disorder of glycosphingolipid metabolism that results in progressive accumulation of neutral glycosphingolipids, predominantly globotriaosylsphingosine (Gb3) in lysosomes, as well as other cellular compartments of several tissues, causing multi-organ manifestations (acroparesthesias, hypohidrosis, angiokeratomas, signs and symptoms of cardiac, renal, cerebrovascular involvement). Pathogenic mutations lead to a deficiency of the lysosomal enzyme alpha-galactosidase A (GLA). In the presence of high clinical suspicion, a careful physical examination and specific laboratory tests are required. Finally, the diagnosis of Fabry’s disease is confirmed by the demonstration of the absence of or reduced alpha-galactosidase A enzyme activity in hemizygous men and gene typing in heterozygous females. Measurement of the biomarkers Gb3 and Lyso Gb3 in biological specimens may facilitate diagnosis. The current treatment of Anderson-Fabry disease is represented by enzyme replacement therapy (ERT) and oral pharmacological chaperone. Future treatments are based on new strategic approaches such as stem cell-based therapy, pharmacological approaches chaperones, mRNA therapy, and viral gene therapy. : This review outlines the current therapeutic approaches and emerging treatment strategies for Anderson-Fabry disease.


2020 ◽  
Vol 20 ◽  
Author(s):  
Christine Ibrahim ◽  
Hanna Semaan ◽  
Marwan El-Sabban ◽  
Fadia Najjar ◽  
Aline Hamade

: Severe acute respiratory syndrome-associated corona virus 2 (SARS-CoV-2), is an extremely pathogenic virus belonging to the family of Coronaviridae. First identified in Wuhan China in December 2019 after an epidemiological investigation of an emerging cluster of pneumonia of unknown etiology, SARS-CoV-2 was declared the cause of a pandemic on March 11 by the World Health Organization (WHO) pointing to the over 118000 cases of Coronavirus disease 2019 (COVID- 19) in over 110 countries. Despite the promising results of drug repositioning studies in the treatment of COVID-19, the evidence of their safety and efficacy remains inconclusive. Cell based therapy has been proven safe and possibly effective in treating multiple lung injuries and diseases but its potential use in the treatment of COVID-19 has not been yet elucidated. Our aim in this review is to provide an overview on the immunomodulatory effect and the regenerative capacity of stem cells and their secretome in the treatment of many diseases including lung injuries. Those findings may contribute to a better understanding of the potential of stem cell therapy in SARS-CoV-2 infection and its potential use in order to find a solution for this healthcare crisis.


Sign in / Sign up

Export Citation Format

Share Document