Production of AlCoCrFeNiME-Based High-Entropy Alloys via Self-Propagating High-Temperature Synthesis

Author(s):  
Murat Alkan ◽  
Esra Dokumaci ◽  
Berkay Türkoglu ◽  
Aslihan Kara ◽  
Büsra Aksu ◽  
...  
2018 ◽  
Vol 96 ◽  
pp. 63-71 ◽  
Author(s):  
Nikolai Kashaev ◽  
Volker Ventzke ◽  
Nikita Stepanov ◽  
Dmitry Shaysultanov ◽  
Vladimir Sanin ◽  
...  

AIP Advances ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 035107
Author(s):  
Seth Iwan ◽  
Kaleb C. Burrage ◽  
Bria C. Storr ◽  
Shane A. Catledge ◽  
Yogesh K. Vohra ◽  
...  

2007 ◽  
Vol 43 (4) ◽  
pp. 239-242
Author(s):  
S. Kh. Suleimanov ◽  
O. A. Dudko ◽  
V. G. Dyskin ◽  
Z. S. Settarova ◽  
M. U. Dzhanklych

2015 ◽  
Vol 25 (12) ◽  
pp. 659-665
Author(s):  
Sin Hyong Joo ◽  
Hayk H. Nersisyan ◽  
Tae Hyuk Lee ◽  
Young Hee Cho ◽  
Hong Moule Kim ◽  
...  

Ceramics ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 108-120
Author(s):  
Simone Barbarossa ◽  
Roberto Orrù ◽  
Valeria Cannillo ◽  
Antonio Iacomini ◽  
Sebastiano Garroni ◽  
...  

Due to their inherent chemical complexity and their refractory nature, the obtainment of highly dense and single-phase high entropy (HE) diborides represents a very hard target to achieve. In this framework, homogeneous (Hf0.2Nb0.2Ta0.2Mo0.2Ti0.2)B2, (Hf0.2Zr0.2Ta0.2Mo0.2Ti0.2)B2, and (Hf0.2Zr0.2Nb0.2Mo0.2Ti0.2)B2 ceramics with high relative densities (97.4, 96.5, and 98.2%, respectively) were successfully produced by spark plasma sintering (SPS) using powders prepared by self-propagating high-temperature synthesis (SHS). Although the latter technique did not lead to the complete conversion of initial precursors into the prescribed HE phases, such a goal was fully reached after SPS (1950 °C/20 min/20 MPa). The three HE products showed similar and, in some cases, even better mechanical properties compared to ceramics with the same nominal composition attained using alternative processing methods. Superior Vickers hardness and elastic modulus values were found for the (Hf0.2Nb0.2Ta0.2Mo0.2Ti0.2)B2 and the (Hf0.2Zr0.2Ta0.2Mo0.2Ti0.2)B2 systems, i.e., 28.1 GPa/538.5 GPa and 28.08 GPa/498.1 GPa, respectively, in spite of the correspondingly higher residual porosities (1.2 and 2.2 vol.%, respectively). In contrast, the third ceramic, not containing tantalum, displayed lower values of these two properties (25.1 GPa/404.5 GPa). However, the corresponding fracture toughness (8.84 MPa m1/2) was relatively higher. This fact can be likely ascribed to the smaller residual porosity (0.3 vol.%) of the sintered material.


2021 ◽  
Vol 11 (5) ◽  
pp. 2426
Author(s):  
Vladimir Promakhov ◽  
Alexey Matveev ◽  
Nikita Schulz ◽  
Mikhail Grigoriev ◽  
Andrey Olisov ◽  
...  

Currently, metal–matrix composite materials are some of the most promising types of materials, and they combine the advantages of a metal matrix and reinforcing particles/fibres. Within the framework of this article, the high-temperature synthesis of metal–matrix composite materials based on the (Ni-Ti)-TiB2 system was studied. The selected approaches make it possible to obtain composite materials of various compositions without contamination and with a high degree of energy efficiency during production processes. Combustion processes in the samples of a 63.5 wt.% NiB + 36.5 wt.% Ti mixture and the phase composition and structure of the synthesis products were researched. It has been established that the synthesis process in the samples proceeds via the spin combustion mechanism. It has been shown that self-propagating high-temperature synthesis (SHS) powder particles have a composite structure and consist of a Ni-Ti matrix and TiB2 reinforcement inclusions that are uniformly distributed inside it. The inclusion size lies in the range between 0.1 and 4 µm, and the average particle size is 0.57 µm. The obtained metal-matrix composite materials can be used in additive manufacturing technologies as ligatures for heat-resistant alloys, as well as for the synthesis of composites using traditional methods of powder metallurgy.


Sign in / Sign up

Export Citation Format

Share Document