scholarly journals Dedekind Complete and Order Continuous Banach C(K)-Modules

Author(s):  
Arkady Kitover ◽  
Mehmet Orhon
Keyword(s):  
Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1544
Author(s):  
Chunpeng Wang ◽  
Hongling Gao ◽  
Meihong Yang ◽  
Jian Li ◽  
Bin Ma ◽  
...  

Continuous orthogonal moments, for which continuous functions are used as kernel functions, are invariant to rotation and scaling, and they have been greatly developed over the recent years. Among continuous orthogonal moments, polar harmonic Fourier moments (PHFMs) have superior performance and strong image description ability. In order to improve the performance of PHFMs in noise resistance and image reconstruction, PHFMs, which can only take integer numbers, are extended to fractional-order polar harmonic Fourier moments (FrPHFMs) in this paper. Firstly, the radial polynomials of integer-order PHFMs are modified to obtain fractional-order radial polynomials, and FrPHFMs are constructed based on the fractional-order radial polynomials; subsequently, the strong reconstruction ability, orthogonality, and geometric invariance of the proposed FrPHFMs are proven; and, finally, the performance of the proposed FrPHFMs is compared with that of integer-order PHFMs, fractional-order radial harmonic Fourier moments (FrRHFMs), fractional-order polar harmonic transforms (FrPHTs), and fractional-order Zernike moments (FrZMs). The experimental results show that the FrPHFMs constructed in this paper are superior to integer-order PHFMs and other fractional-order continuous orthogonal moments in terms of performance in image reconstruction and object recognition, as well as that the proposed FrPHFMs have strong image description ability and good stability.


2020 ◽  
Vol 53 (2) ◽  
pp. 16215-16220
Author(s):  
Håkan Runvik ◽  
Alexander Medvedev

2021 ◽  
Vol 10 (1) ◽  
pp. 1-8
Author(s):  
Christian Grussler ◽  
Anders Rantzer

Abstract We address the issue of establishing standard forms for nonnegative and Metzler matrices by considering their similarity to nonnegative and Metzler Hessenberg matrices. It is shown that for dimensions n 3, there always exists a subset of nonnegative matrices that are not similar to a nonnegative Hessenberg form, which in case of n = 3 also provides a complete characterization of all such matrices. For Metzler matrices, we further establish that they are similar to Metzler Hessenberg matrices if n 4. In particular, this provides the first standard form for controllable third order continuous-time positive systems via a positive controller-Hessenberg form. Finally, we present an example which illustrates why this result is not easily transferred to discrete-time positive systems. While many of our supplementary results are proven in general, it remains an open question if Metzler matrices of dimensions n 5 remain similar to Metzler Hessenberg matrices.


2021 ◽  
Vol 78 (1) ◽  
pp. 139-156
Author(s):  
Antonio Boccuto

Abstract We give some versions of Hahn-Banach, sandwich, duality, Moreau--Rockafellar-type theorems, optimality conditions and a formula for the subdifferential of composite functions for order continuous vector lattice-valued operators, invariant or equivariant with respect to a fixed group G of homomorphisms. As applications to optimization problems with both convex and linear constraints, we present some Farkas and Kuhn-Tucker-type results.


1987 ◽  
Vol 3 (1) ◽  
pp. 143-149 ◽  
Author(s):  
Terence D. Agbeyegbe

This article deals with the derivation of the exact discrete model that corresponds to a closed linear first-order continuous-time system with mixed stock and flow data. This exact discrete model is (under appropriate additional conditions) a stationary autoregressive moving average time series model and may allow one to obtain asymptotically efficient estimators of the parameters describing the continuous-time system.


Author(s):  
G. T. Roberts

1. Objective. It is possible to define order convergence on the vector lattice of all continuous functions of compact support on a locally compact topological space. Every measure is a linear form on this vector lattice. The object of this paper is to prove that a measure is such that every set of the first category of Baire has measure zero if and only if the measure is a linear form which is continuous in the order convergence.


Sign in / Sign up

Export Citation Format

Share Document