Deep Learning for Muscle Pathology Image Analysis

Author(s):  
Yuanpu Xie ◽  
Fujun Liu ◽  
Fuyong Xing ◽  
Lin Yang
2019 ◽  
Vol 189 (9) ◽  
pp. 1686-1698 ◽  
Author(s):  
Shidan Wang ◽  
Donghan M. Yang ◽  
Ruichen Rong ◽  
Xiaowei Zhan ◽  
Guanghua Xiao

2020 ◽  
Vol 14 (4) ◽  
pp. 470-487
Author(s):  
Shujian Deng ◽  
Xin Zhang ◽  
Wen Yan ◽  
Eric I-Chao Chang ◽  
Yubo Fan ◽  
...  

Author(s):  
Machunoori Mounica ◽  
Vijaya Kumar Vadladi ◽  
Gudapalli Karuna ◽  
Pericharla Sowmya

Cancers ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1673 ◽  
Author(s):  
Shidan Wang ◽  
Donghan M. Yang ◽  
Ruichen Rong ◽  
Xiaowei Zhan ◽  
Junya Fujimoto ◽  
...  

Objective: Accurate diagnosis and prognosis are essential in lung cancer treatment selection and planning. With the rapid advance of medical imaging technology, whole slide imaging (WSI) in pathology is becoming a routine clinical procedure. An interplay of needs and challenges exists for computer-aided diagnosis based on accurate and efficient analysis of pathology images. Recently, artificial intelligence, especially deep learning, has shown great potential in pathology image analysis tasks such as tumor region identification, prognosis prediction, tumor microenvironment characterization, and metastasis detection. Materials and Methods: In this review, we aim to provide an overview of current and potential applications for AI methods in pathology image analysis, with an emphasis on lung cancer. Results: We outlined the current challenges and opportunities in lung cancer pathology image analysis, discussed the recent deep learning developments that could potentially impact digital pathology in lung cancer, and summarized the existing applications of deep learning algorithms in lung cancer diagnosis and prognosis. Discussion and Conclusion: With the advance of technology, digital pathology could have great potential impacts in lung cancer patient care. We point out some promising future directions for lung cancer pathology image analysis, including multi-task learning, transfer learning, and model interpretation.


2021 ◽  
Vol 198 ◽  
pp. 105796
Author(s):  
Alain Jungo ◽  
Olivier Scheidegger ◽  
Mauricio Reyes ◽  
Fabian Balsiger

Author(s):  
Dinesh Pothineni ◽  
Martin R. Oswald ◽  
Jan Poland ◽  
Marc Pollefeys
Keyword(s):  

Plant Methods ◽  
2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Shuo Zhou ◽  
Xiujuan Chai ◽  
Zixuan Yang ◽  
Hongwu Wang ◽  
Chenxue Yang ◽  
...  

Abstract Background Maize (Zea mays L.) is one of the most important food sources in the world and has been one of the main targets of plant genetics and phenotypic research for centuries. Observation and analysis of various morphological phenotypic traits during maize growth are essential for genetic and breeding study. The generally huge number of samples produce an enormous amount of high-resolution image data. While high throughput plant phenotyping platforms are increasingly used in maize breeding trials, there is a reasonable need for software tools that can automatically identify visual phenotypic features of maize plants and implement batch processing on image datasets. Results On the boundary between computer vision and plant science, we utilize advanced deep learning methods based on convolutional neural networks to empower the workflow of maize phenotyping analysis. This paper presents Maize-IAS (Maize Image Analysis Software), an integrated application supporting one-click analysis of maize phenotype, embedding multiple functions: (I) Projection, (II) Color Analysis, (III) Internode length, (IV) Height, (V) Stem Diameter and (VI) Leaves Counting. Taking the RGB image of maize as input, the software provides a user-friendly graphical interaction interface and rapid calculation of multiple important phenotypic characteristics, including leaf sheath points detection and leaves segmentation. In function Leaves Counting, the mean and standard deviation of difference between prediction and ground truth are 1.60 and 1.625. Conclusion The Maize-IAS is easy-to-use and demands neither professional knowledge of computer vision nor deep learning. All functions for batch processing are incorporated, enabling automated and labor-reduced tasks of recording, measurement and quantitative analysis of maize growth traits on a large dataset. We prove the efficiency and potential capability of our techniques and software to image-based plant research, which also demonstrates the feasibility and capability of AI technology implemented in agriculture and plant science.


IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Uzair Khan ◽  
Sidike Paheding ◽  
Colin Elkin ◽  
Vijay Devabhaktuni

Sign in / Sign up

Export Citation Format

Share Document