Study of Operating Properties of Surgical Tools

Author(s):  
Anita Kajzer ◽  
Monika Lewczuk ◽  
Marcin Kaczmarek ◽  
Wojciech Kajzer
Author(s):  
A. P. Ponomarev ◽  
L. G. Kolyada ◽  
E. V. Tarasyuk

Metal products are subjected to atmospheric corrosion during transportation and storing. An important way to prevent this negative phenomenon is application of special packing materials, in particular materials, containing volatile inhibitors of corrosion, which protect metal against various corrosion agents. To protect metal effectively it is necessary to provide a definite level of operating characteristics of packing materials. The purpose of the work was the study of operating properties of inhibited crepe, inhibited and laminated polyethylene film, inhibited crepe and reinforced by polypropylene web papers, manufactured by OJSC “PP TechnoKhim”, Magnitogorsk, used for packing of metals. Structural and dimensional, sorption, deformation and strength characteristics, of the studied anticorrosion papers are presented, the characteristics being calculated based on the results of measurements. To determine their physical-mechanical and anticorrosion properties, standard methods and methodologies were used. To evaluate impact of moisture and transportation conditions, indices of water adsorption and wear of the studied papers were determined. Inhibitor content in these materials was determined by thermogravimetric analysis method. Their protective ability was studied on samples of low carbon steel strip. For accelerated corrosion tests the strip samples were degreased by alcohol, dried in air and packed in the studied anticorrosion papers, after that they were exposed under increased temperatures and moisture conditions. It was determined, that among the materials under the study, the inhibited crepe paper, reinforced by polypropylene web, hhas the best complex of physical-mechanical and anticorrosion properties. It provides a higher level of prevention corrosion of metal l and surpasses other materials in a number of deformation and strength characteristics. Recommendations were proposed to improve qquality of produced anticorrosion papers.


Author(s):  
Konrad Malinowski ◽  
Jan Paszkowski ◽  
Marcin Mostowy ◽  
Adrian Góralczyk ◽  
Robert F. LaPrade ◽  
...  

2004 ◽  
Vol 100 (5) ◽  
pp. 1167-1171 ◽  
Author(s):  
Gerald L. Wolf ◽  
George W. Sidebotham ◽  
Jackson L. P. Lazard ◽  
Jean G. Charchaflieh

Background Operating room fires fueled by surgical drapes and ignited by high-energy surgical tools in air and oxygen-enriched atmospheres continue to occur. Methods The authors examined the time to ignition of huck towels and three commonly used surgical drape materials in air, 50% oxygen, and 95% oxygen using a carbon dioxide surgical laser as an ignition source. In addition, a phenol-polymer fabric was tested. Results In air, polypropylene and phenol polymer do not ignite. For polypropylene, the laser instantly vaporized a hole, and therefore, interaction between the laser and material ceased. When tested in combination with another material, the polypropylene time to ignition assumed the behavior of the material with which it was combined. For phenol polymer, the laser did not penetrate the material. Huck towels, cotton-polyester, and non-woven cellulose-polyester ignited in air with decreasing times to ignition. All tested materials ignited in 50% and 95% oxygen. Conclusion The results of this study reveal that with increasing oxygen concentration, the time to ignition becomes shorter, and the consequences become more severe. The possibility exists for manufacturers to develop drape materials that are safer than existing materials.


Author(s):  
Randy Lee ◽  
Roberta L. Klatzky ◽  
George D. Stetten

Sign in / Sign up

Export Citation Format

Share Document