Performance and Brain Activity During a Spatial Working Memory Task: Application to Pilot Candidate Selection

Author(s):  
Mickaël Causse ◽  
Zarrin Chua ◽  
Nadine Matton
Author(s):  
Francesco Panico ◽  
Stefania De Marco ◽  
Laura Sagliano ◽  
Francesca D’Olimpio ◽  
Dario Grossi ◽  
...  

AbstractThe Corsi Block-Tapping test (CBT) is a measure of spatial working memory (WM) in clinical practice, requiring an examinee to reproduce sequences of cubes tapped by an examiner. CBT implies complementary behaviors in the examiners and the examinees, as they have to attend a precise turn taking. Previous studies demonstrated that the Prefrontal Cortex (PFC) is activated during CBT, but scarce evidence is available on the neural correlates of CBT in the real setting. We assessed PFC activity in dyads of examiner–examinee participants while completing the real version of CBT, during conditions of increasing and exceeding workload. This procedure allowed to investigate whether brain activity in the dyads is coordinated. Results in the examinees showed that PFC activity was higher when the workload approached or reached participants’ spatial WM span, and lower during workload conditions that were largely below or above their span. Interestingly, findings in the examiners paralleled the ones in the examinees, as examiners’ brain activity increased and decreased in a similar way as the examinees’ one. In the examiners, higher left-hemisphere activity was observed suggesting the likely activation of non-spatial WM processes. Data support a bell-shaped relationship between cognitive load and brain activity, and provide original insights on the cognitive processes activated in the examiner during CBT.


2021 ◽  
Author(s):  
Adeline Jabès ◽  
Giuliana Klencklen ◽  
Paolo Ruggeri ◽  
Christoph M. Michel ◽  
Pamela Banta Lavenex ◽  
...  

AbstractAlterations of resting-state EEG microstates have been associated with various neurological disorders and behavioral states. Interestingly, age-related differences in EEG microstate organization have also been reported, and it has been suggested that resting-state EEG activity may predict cognitive capacities in healthy individuals across the lifespan. In this exploratory study, we performed a microstate analysis of resting-state brain activity and tested allocentric spatial working memory performance in healthy adult individuals: twenty 25–30-year-olds and twenty-five 64–75-year-olds. We found a lower spatial working memory performance in older adults, as well as age-related differences in the five EEG microstate maps A, B, C, C′ and D, but especially in microstate maps C and C′. These two maps have been linked to neuronal activity in the frontal and parietal brain regions which are associated with working memory and attention, cognitive functions that have been shown to be sensitive to aging. Older adults exhibited lower global explained variance and occurrence of maps C and C′. Moreover, although there was a higher probability to transition from any map towards maps C, C′ and D in young and older adults, this probability was lower in older adults. Finally, although age-related differences in resting-state EEG microstates paralleled differences in allocentric spatial working memory performance, we found no evidence that any individual or combination of resting-state EEG microstate parameter(s) could reliably predict individual spatial working memory performance. Whether the temporal dynamics of EEG microstates may be used to assess healthy cognitive aging from resting-state brain activity requires further investigation.


2003 ◽  
Vol 33 (3) ◽  
pp. 455-467 ◽  
Author(s):  
F. C. MURPHY ◽  
A. MICHAEL ◽  
T. W. ROBBINS ◽  
B. J. SAHAKIAN

Background. Recent evidence suggests that an abnormal response to performance feedback may contribute to the wide-ranging neuropsychological deficits typically associated with depressive illness. The present research sought to determine whether the inability of depressed patients to utilize performance feedback advantageously is equally true for accurate and misleading feedback.Method. Patients with major depression and matched controls completed: (1) a visual discrimination and reversal task that featured intermittent and misleading negative feedback; and (2) feedback and no-feedback versions of a computerised test of spatial working memory. In the feedback version, negative feedback was accurate, highly informative, and could be used as a mnemonic aid.Results. On the Probability Reversal task, depressed patients were impaired in their ability to maintain response set in the face of misleading negative feedback as shown by their increased tendency to switch responding to the ‘incorrect’ stimulus following negative reinforcement, relative to that of controls. Patients' ability to acquire and reverse the necessary visual discrimination was unimpaired. On the Spatial Working Memory task, depressed patients made significantly more between-search errors than controls on the most difficult trials, but their ability to use negative feedback to facilitate performance remained intact.Conclusions. The present results suggest that feedback can have different effects in different contexts. Misleading, negative feedback appears to disrupt the performance of depressed patients, whereas negative but accurate feedback does not. These findings are considered in the context of recent studies on reinforcement systems and their associated neurobiological substrates.


2009 ◽  
Vol 18 (4) ◽  
pp. 404-410 ◽  
Author(s):  
MARK S. ALOIA ◽  
LAWRENCE H. SWEET ◽  
BETH A. JERSKEY ◽  
MOLLY ZIMMERMAN ◽  
JOHN TODD ARNEDT ◽  
...  

2008 ◽  
Vol 98 ◽  
pp. 119
Author(s):  
P.K. Mallikarjun ◽  
A. Diukova ◽  
J. Cahill ◽  
D. Auer ◽  
P.F. Liddle

Author(s):  
Jinzhuang Huang ◽  
Lei Xie ◽  
Ruiwei Guo ◽  
Jinhong Wang ◽  
Jinquan Lin ◽  
...  

Abstract Hemodialysis (HD) is associated with cognitive impairment in patients with end-stage renal disease (ESRD). However, the neural mechanism of spatial working memory (SWM) impairment in HD-ESRD patients remains unclear. We investigated the abnormal alterations in SWM-associated brain activity patterns in HD-ESRD patients using blood oxygen level-dependent functional magnetic resonance imaging (BOLD-fMRI) technique during n-back tasks. Twenty-two HD-ESRD patients and 22 well-matched controls underwent an fMRI scan while undergoing a three-load n-back tasks with different difficulty levels. Cognitive and mental states were assessed using a battery of neuropsychologic tests. The HD-ESRD patients exhibited worse memory abilities than controls. Compared with the control group, the HD-ESRD patient group showed lower accuracy and longer response time under the n-back tasks, especially in the 2-back task. The patterns of brain activation changed under different working memory loads in the HD-ESRD patients, showing decreased activity in the right medial frontal gyrus and inferior frontal gyrus under 0-back and 1-back task, while more decreased activation in the bilateral frontal cortex, parietal lobule, anterior/posterior cingulate cortex and insula cortex under 2-back task. With the increase of task difficulty, the activation degree of the frontal and parietal cortex decreased. More importantly, we found that lower activation in frontal cortex and parietal lobule was associated with worse cognitive function in the HD-ESRD patients. These results demonstrate that the abnormal brain activity patterns of frontal cortex and parietal lobule may reflect the neural mediation of SWM impairment.


NeuroImage ◽  
1998 ◽  
Vol 8 (3) ◽  
pp. 249-261 ◽  
Author(s):  
B.J. Casey ◽  
Jonathan D. Cohen ◽  
Kathy O'Craven ◽  
Richard J. Davidson ◽  
William Irwin ◽  
...  

2021 ◽  
Vol 13 ◽  
Author(s):  
Adeline Jabès ◽  
Giuliana Klencklen ◽  
Paolo Ruggeri ◽  
Jean-Philippe Antonietti ◽  
Pamela Banta Lavenex ◽  
...  

During normal aging resting-state brain activity changes and working memory performance declines as compared to young adulthood. Interestingly, previous studies reported that different electroencephalographic (EEG) measures of resting-state brain activity may correlate with working memory performance at different ages. Here, we recorded resting-state EEG activity and tested allocentric spatial working memory in healthy young (20–30 years) and older (65–75 years) adults. We adapted standard EEG methods to record brain activity in mobile participants in a non-shielded environment, in both eyes closed and eyes open conditions. Our study revealed some age-group differences in resting-state brain activity that were consistent with previous results obtained in different recording conditions. We confirmed that age-group differences in resting-state EEG activity depend on the recording conditions and the specific parameters considered. Nevertheless, lower theta-band and alpha-band frequencies and absolute powers, and higher beta-band and gamma-band relative powers were overall observed in healthy older adults, as compared to healthy young adults. In addition, using principal component and regression analyses, we found that the first extracted EEG component, which represented mainly theta, alpha and beta powers, correlated with spatial working memory performance in older adults, but not in young adults. These findings are consistent with the theory that the neurobiological bases of working memory performance may differ between young and older adults. However, individual measures of resting-state EEG activity could not be used as reliable biomarkers to predict individual allocentric spatial working memory performance in young or older adults.


Sign in / Sign up

Export Citation Format

Share Document