The Wiener Attack on RSA Revisited: A Quest for the Exact Bound

Author(s):  
Willy Susilo ◽  
Joseph Tonien ◽  
Guomin Yang
Keyword(s):  
2003 ◽  
Vol 2003 (31) ◽  
pp. 2003-2009 ◽  
Author(s):  
Vijay Gupta ◽  
Niraj Kumar

Guo (1988) introduced the integral modification of Meyer-Kö nig and Zeller operatorsMˆnand studied the rate of convergence for functions of bounded variation. Gupta (1995) gave the sharp estimate for the operatorsMˆn. Zeng (1998) gave the exact bound and claimed to improve the results of Guo and Gupta, but there is a major mistake in the paper of Zeng. In the present note, we give the correct estimate for the rate of convergence on bounded variation functions.


2019 ◽  
Vol 34 (28) ◽  
pp. 1950223 ◽  
Author(s):  
A. D. Alhaidari

We use the Tridiagonal Representation Approach (TRA) to obtain exact bound states solution (energy spectrum and wave function) of the Schrödinger equation for a three-parameter short-range potential with [Formula: see text], [Formula: see text] and [Formula: see text] singularities at the origin. The solution is a finite series of square-integrable functions with expansion coefficients that satisfy a three-term recursion relation. The solution of the recursion is a non-conventional orthogonal polynomial with discrete spectrum. The results of this work could be used to study the binding of an electron to a molecule with an effective electric quadrupole moment which has the same [Formula: see text] singularity.


Pramana ◽  
1992 ◽  
Vol 39 (5) ◽  
pp. 493-499 ◽  
Author(s):  
R N Chaudhuri ◽  
M Mondal

2010 ◽  
Vol 25 (33) ◽  
pp. 2849-2857 ◽  
Author(s):  
GUO-HUA SUN ◽  
SHI-HAI DONG

In this work we solve the Dirac equation by constructing the exact bound state solutions for a mixing of scalar and vector spherically asymmetrical singular oscillators. This is done provided that the vector potential is equal to the scalar potential. The spinor wave functions and bound state energy levels are presented. The case V(r) = -S(r) is also considered.


1994 ◽  
Vol 109 (3) ◽  
pp. 311-314 ◽  
Author(s):  
S. K. Bose
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document