scholarly journals FOUGERE: User-Centric Location Privacy in Mobile Crowdsourcing Apps

Author(s):  
Lakhdar Meftah ◽  
Romain Rouvoy ◽  
Isabelle Chrisment
Author(s):  
Wenqiang Jin ◽  
Mingyan Xiao ◽  
Linke Guo ◽  
Lei Yang ◽  
Ming Li

IEEE Access ◽  
2018 ◽  
Vol 6 ◽  
pp. 5678-5687 ◽  
Author(s):  
Zhongyang Chi ◽  
Yingjie Wang ◽  
Yan Huang ◽  
Xiangrong Tong

Author(s):  
Arwa Bashanfar ◽  
Eman Al-Zahrani ◽  
Maram Alutebei ◽  
Wejdan Aljagthami ◽  
Suhari Alshehri

Sensors ◽  
2019 ◽  
Vol 19 (4) ◽  
pp. 921 ◽  
Author(s):  
Bingxu Zhao ◽  
Yingjie Wang ◽  
Yingshu Li ◽  
Yang Gao ◽  
Xiangrong Tong

With the rapid development of mobile devices, mobile crowdsourcing has become an important research focus. According to the task allocation, scholars have proposed many methods. However, few works discuss combining social networks and mobile crowdsourcing. To maximize the utilities of mobile crowdsourcing system, this paper proposes a task allocation model considering the attributes of social networks for mobile crowdsourcing system. Starting from the homogeneity of human beings, the relationship between friends in social networks is applied to mobile crowdsourcing system. A task allocation algorithm based on the friend relationships is proposed. The GeoHash coding mechanism is adopted in the process of calculating the strength of worker relationship, which effectively protects the location privacy of workers. Utilizing synthetic dataset and the real-world Yelp dataset, the performance of the proposed task allocation model was evaluated. Through comparison experiments, the effectiveness and applicability of the proposed allocation mechanism were verified.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2474
Author(s):  
Guoying Qiu ◽  
Yulong Shen ◽  
Ke Cheng ◽  
Lingtong Liu ◽  
Shuiguang Zeng

The increasing popularity of smartphones and location-based service (LBS) has brought us a new experience of mobile crowdsourcing marked by the characteristics of network-interconnection and information-sharing. However, these mobile crowdsourcing applications suffer from various inferential attacks based on mobile behavioral factors, such as location semantic, spatiotemporal correlation, etc. Unfortunately, most of the existing techniques protect the participant’s location-privacy according to actual trajectories. Once the protection fails, data leakage will directly threaten the participant’s location-related private information. It open the issue of participating in mobile crowdsourcing service without actual locations. In this paper, we propose a mobility-aware trajectory-prediction solution, TMarkov, for achieving privacy-preserving mobile crowdsourcing. Specifically, we introduce a time-partitioning concept into the Markov model to overcome its traditional limitations. A new transfer model is constructed to record the mobile user’s time-varying behavioral patterns. Then, an unbiased estimation is conducted according to Gibbs Sampling method, because of the data incompleteness. Finally, we have the TMarkov model which characterizes the participant’s dynamic mobile behaviors. With TMarkov in place, a mobility-aware spatiotemporal trajectory is predicted for the mobile user to participate in the crowdsourcing application. Extensive experiments with real-world dataset demonstrate that TMarkov well balances the trade-off between privacy preservation and data usability.


2018 ◽  
Vol 135 ◽  
pp. 32-43 ◽  
Author(s):  
Yingjie Wang ◽  
Zhipeng Cai ◽  
Xiangrong Tong ◽  
Yang Gao ◽  
Guisheng Yin

Sign in / Sign up

Export Citation Format

Share Document