Bio-Inspired, Real-Time Passive Vision for Mobile Robots

2019 ◽  
pp. 33-58
Author(s):  
Piotr Skrzypczyński ◽  
Marta Rostkowska ◽  
Marek Wa̧sik
Keyword(s):  
Author(s):  
Harunori Gakuhari ◽  
Songmin Jia ◽  
Kunikatsu Takase ◽  
Yoshiro Hada

Agriculture ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 954
Author(s):  
Abhijeet Ravankar ◽  
Ankit A. Ravankar ◽  
Arpit Rawankar ◽  
Yohei Hoshino

In recent years, autonomous robots have extensively been used to automate several vineyard tasks. Autonomous navigation is an indispensable component of such field robots. Autonomous and safe navigation has been well studied in indoor environments and many algorithms have been proposed. However, unlike structured indoor environments, vineyards pose special challenges for robot navigation. Particularly, safe robot navigation is crucial to avoid damaging the grapes. In this regard, we propose an algorithm that enables autonomous and safe robot navigation in vineyards. The proposed algorithm relies on data from a Lidar sensor and does not require a GPS. In addition, the proposed algorithm can avoid dynamic obstacles in the vineyard while smoothing the robot’s trajectories. The curvature of the trajectories can be controlled, keeping a safe distance from both the crop and the dynamic obstacles. We have tested the algorithm in both a simulation and with robots in an actual vineyard. The results show that the robot can safely navigate the lanes of the vineyard and smoothly avoid dynamic obstacles such as moving people without abruptly stopping or executing sharp turns. The algorithm performs in real-time and can easily be integrated into robots deployed in vineyards.


Robotica ◽  
1992 ◽  
Vol 10 (3) ◽  
pp. 217-227 ◽  
Author(s):  
Huang Han-Pang ◽  
Lee Pei-Chien

SUMMARYA real-time obstacle avoidance algorithm is proposed for autonomous mobile robots. The algorithm is sensor-based and consists of a H-mode and T-mode. The algorithm can deal with a complicated obstacle environment, such as multiple concave and convex obstacles. It will be shown that the algorithm is more efficient and more robust than other sensor-based algorithms. In addition, the algorithm will guarantee a solution for the obstacle avoidance problem. Since the algorithm only takes up a small computational time, it can be implemented in real time.


Sign in / Sign up

Export Citation Format

Share Document