Development of Glutamatergic and GABAergic Synapses

2021 ◽  
pp. 265-284
Author(s):  
Marco Sassoè-Pognetto ◽  
Annarita Patrizi
Keyword(s):  
2021 ◽  
pp. 135245852110221
Author(s):  
Marco Vercellino ◽  
Stella Marasciulo ◽  
Silvia Grifoni ◽  
Elena Vallino-Costassa ◽  
Chiara Bosa ◽  
...  

Objectives: To investigate the extent of synaptic loss, and the contribution of gray matter (GM) inflammation and demyelination to synaptic loss, in multiple sclerosis (MS) brain tissue. Methods: This study was performed on two different post-mortem series of MS and control brains, including deep GM and cortical GM. MS brain samples had been specifically selected for the presence of active demyelinating GM lesions. Over 1,000,000 individual synapses were identified and counted using confocal microscopy, and further characterized as glutamatergic/GABAergic. Synaptic counts were also correlated with neuronal/axonal loss. Results: Important synaptic loss was observed in active demyelinating GM lesions (−58.9%), while in chronic inactive GM lesions, synaptic density was only mildly reduced compared to adjacent non-lesional gray matter (NLGM) (−12.6%). Synaptic loss equally affected glutamatergic and GABAergic synapses. Diffuse synaptic loss was observed in MS NLGM compared to control GM (−21.2% overall). Conclusion: This study provides evidence, in MS brain tissue, of acute synaptic damage/loss during active GM inflammatory demyelination and of synaptic reorganization in chronically demyelinated GM, affecting equally glutamatergic and GABAergic synapses. Furthermore, this study provides a strong indication of widespread synaptic loss in MS NLGM also independently from focal GM demyelination.


1983 ◽  
Vol 267 (2) ◽  
pp. 357-360 ◽  
Author(s):  
Fujio Murakami ◽  
Hironobu Katsumaru ◽  
Jang-Yen Wu ◽  
Tomohiro Matsuda ◽  
Nakaakira Tsukahara
Keyword(s):  

Author(s):  
Joseph V. Raimondo ◽  
Henry Markram ◽  
Colin J. Akerman

2019 ◽  
Vol 1707 ◽  
pp. 18-26 ◽  
Author(s):  
Won Chan Oh ◽  
Katharine R. Smith

2010 ◽  
Vol 108 (1) ◽  
pp. 379-384 ◽  
Author(s):  
Shiva K. Tyagarajan ◽  
Himanish Ghosh ◽  
Gonzalo E. Yévenes ◽  
Irina Nikonenko ◽  
Claire Ebeling ◽  
...  

Postsynaptic scaffolding proteins ensure efficient neurotransmission by anchoring receptors and signaling molecules in synapse-specific subcellular domains. In turn, posttranslational modifications of scaffolding proteins contribute to synaptic plasticity by remodeling the postsynaptic apparatus. Though these mechanisms are operant in glutamatergic synapses, little is known about regulation of GABAergic synapses, which mediate inhibitory transmission in the CNS. Here, we focused on gephyrin, the main scaffolding protein of GABAergic synapses. We identify a unique phosphorylation site in gephyrin, Ser270, targeted by glycogen synthase kinase 3β (GSK3β) to modulate GABAergic transmission. Abolishing Ser270 phosphorylation increased the density of gephyrin clusters and the frequency of miniature GABAergic postsynaptic currents in cultured hippocampal neurons. Enhanced, phosphorylation-dependent gephyrin clustering was also induced in vitro and in vivo with lithium chloride. Lithium is a GSK3β inhibitor used therapeutically as mood-stabilizing drug, which underscores the relevance of this posttranslational modification for synaptic plasticity. Conversely, we show that gephyrin availability for postsynaptic clustering is limited by Ca2+-dependent gephyrin cleavage by the cysteine protease calpain-1. Together, these findings identify gephyrin as synaptogenic molecule regulating GABAergic synaptic plasticity, likely contributing to the therapeutic action of lithium.


Sign in / Sign up

Export Citation Format

Share Document