scaffolding proteins
Recently Published Documents


TOTAL DOCUMENTS

286
(FIVE YEARS 64)

H-INDEX

45
(FIVE YEARS 4)

2021 ◽  
Vol 20 (4) ◽  
pp. 1047-1057
Author(s):  
Veronika Meliskova ◽  
Tomas Havranek ◽  
Zuzana Bacova ◽  
Jan Bakos

2021 ◽  
Author(s):  
Tanya A. Baldwin ◽  
Yong Li ◽  
Autumn Marsden ◽  
Roland F.R. Schindler ◽  
Musi Zhang ◽  
...  

The establishment of macromolecular complexes by scaffolding proteins such as A-kinase anchoring proteins is key to the local production of cAMP by anchored adenylyl cyclase (AC) and the subsequent cAMP signaling necessary for many cardiac functions. We have identified herein a novel AC scaffold, the Popeye domain-containing (POPDC) protein. Unlike other AC scaffolding proteins, POPDC1 binds cAMP with high affinity. The POPDC family of proteins are important for cardiac pacemaking and conduction, due in part to their cAMP-dependent binding and regulation of TREK-1 potassium channels. TREK-1 binds the AC9:POPDC1 complex and co-purifies in a POPDC1-dependent manner with AC9-associated activity in heart. Although the interaction of AC9 and POPDC1 is cAMP independent, TREK-1 association with AC9 and POPDC1 is reduced in an isoproterenol-dependent manner, requiring an intact cAMP binding Popeye domain and AC activity within the complex. We show that deletion of Adcy9 (AC9) gives rise to bradycardia at rest and stress-induced heart rate variability. The phenotype for deletion of Adcy9 is milder than previously observed upon loss of Popdc1, but similar to loss of Kcnk2 (TREK-1). Thus, POPDC1 represents a novel scaffolding protein for AC9 to regulate heart rate control.


2021 ◽  
Vol 12 ◽  
Author(s):  
Justyna Paprocka ◽  
Szymon Ziętkiewicz ◽  
Joanna Kosińska ◽  
Ewa Kaczorowska ◽  
Rafał Płoski

The SH3 and multiple ankyrin repeat domains (SHANKs) are a family of scaffolding proteins located in excitatory synapses required for their development and function. Molecular defects of SHANK3 are a well-known cause of several neurodevelopmental entities, in particular autism spectrum disorders and epilepsy, whereas relatively little is known about disease associations of SHANK1. Here, we propose a novel de novo mosaic p.(Gly126Arg) SHANK1 variant as the monogenic cause of disease in a patient who presented, from the age of 2 years, moderate intellectual disability, autism, and refractory epilepsy of the Lennox–Gastaut type. The epilepsy responded remarkably well to cannabidiol add-on therapy. In silico analyses including homology modeling and molecular dynamics simulations indicated the deleterious effect of SHANK1 p.(Gly126Arg) on the protein structure and the related function associated with protein–protein interactions. In particular, the variant was predicted to disrupt a hitherto unknown conserved region of SHANK1 protein with high homology to a recently recognized functionally relevant domain in SHANK3 implicated in ligand binding, including the “non-canonical” binding of Rap1.


Biomolecules ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1697
Author(s):  
Ana Sofía Vallés ◽  
Francisco J. Barrantes

Compartmentalization of the membrane is essential for cells to perform highly specific tasks and spatially constrained biochemical functions in topographically defined areas. These membrane lateral heterogeneities range from nanoscopic dimensions, often involving only a few molecular constituents, to micron-sized mesoscopic domains resulting from the coalescence of nanodomains. Short-lived domains lasting for a few milliseconds coexist with more stable platforms lasting from minutes to days. This panoply of lateral domains subserves the great variety of demands of cell physiology, particularly high for those implicated in signaling. The dendritic spine, a subcellular structure of neurons at the receiving (postsynaptic) end of central nervous system excitatory synapses, exploits this compartmentalization principle. In its most frequent adult morphology, the mushroom-shaped spine harbors neurotransmitter receptors, enzymes, and scaffolding proteins tightly packed in a volume of a few femtoliters. In addition to constituting a mesoscopic lateral heterogeneity of the dendritic arborization, the dendritic spine postsynaptic membrane is further compartmentalized into spatially delimited nanodomains that execute separate functions in the synapse. This review discusses the functional relevance of compartmentalization and nanodomain organization in synaptic transmission and plasticity and exemplifies the importance of this parcelization in various neurotransmitter signaling systems operating at dendritic spines, using two fast ligand-gated ionotropic receptors, the nicotinic acetylcholine receptor and the glutamatergic receptor, and a second-messenger G-protein coupled receptor, the cannabinoid receptor, as paradigmatic examples.


Aging ◽  
2021 ◽  
Author(s):  
Caroline Capdevielle ◽  
Martin Hagedorn

Author(s):  
Kristin A. Altwegg ◽  
Ratna K. Vadlamudi

Breast cancer (BC) is the most ubiquitous cancer in women. Approximately 70-80% of BC diagnoses are positive for estrogen receptor (ER) alpha (ERα). The steroid hormone estrogen [17β-estradiol (E2)] plays a vital role both in the initiation and progression of BC. The E2-ERα mediated actions involve genomic signaling and non-genomic signaling. The specificity and magnitude of ERα signaling are mediated by interactions between ERα and several coregulator proteins called coactivators or corepressors. Alterations in the levels of coregulators are common during BC progression and they enhance ligand-dependent and ligand-independent ERα signaling which drives BC growth, progression, and endocrine therapy resistance. Many ERα coregulator proteins function as scaffolding proteins and some have intrinsic or associated enzymatic activities, thus the targeting of coregulators for blocking BC progression is a challenging task. Emerging data from in vitro and in vivo studies suggest that targeting coregulators to inhibit BC progression to therapy resistance is feasible. This review explores the current state of ERα coregulator signaling and the utility of targeting the ERα coregulator axis in treating advanced BC.


Cancers ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 4264
Author(s):  
Larissa Kotelevets ◽  
Eric Chastre

Scaffolding molecules exert a critical role in orchestrating cellular response through the spatiotemporal assembly of effector proteins as signalosomes. By increasing the efficiency and selectivity of intracellular signaling, these molecules can exert (anti/pro)oncogenic activities. As an archetype of scaffolding proteins with tumor suppressor property, the present review focuses on MAGI1, 2, and 3 (membrane-associated guanylate kinase inverted), a subgroup of the MAGUK protein family, that mediate networks involving receptors, junctional complexes, signaling molecules, and the cytoskeleton. MAGI1, 2, and 3 are comprised of 6 PDZ domains, 2 WW domains, and 1 GUK domain. These 9 protein binding modules allow selective interactions with a wide range of effectors, including the PTEN tumor suppressor, the β-catenin and YAP1 proto-oncogenes, and the regulation of the PI3K/AKT, the Wnt, and the Hippo signaling pathways. The frequent downmodulation of MAGIs in various human malignancies makes these scaffolding molecules and their ligands putative therapeutic targets. Interestingly, MAGI1 and MAGI2 genetic loci generate a series of long non-coding RNAs that act as a tumor promoter or suppressor in a tissue-dependent manner, by selectively sponging some miRNAs or by regulating epigenetic processes. Here, we discuss the different paths followed by the three MAGIs to control carcinogenesis.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Matej Horvath ◽  
Olivia Petrvalska ◽  
Petr Herman ◽  
Veronika Obsilova ◽  
Tomas Obsil

AbstractDeath-associated protein kinase 2 (DAPK2) is a CaM-regulated Ser/Thr protein kinase, involved in apoptosis, autophagy, granulocyte differentiation and motility regulation, whose activity is controlled by autoinhibition, autophosphorylation, dimerization and interaction with scaffolding proteins 14-3-3. However, the structural basis of 14-3-3-mediated DAPK2 regulation remains unclear. Here, we structurally and biochemically characterize the full-length human DAPK2:14-3-3 complex by combining several biophysical techniques. The results from our X-ray crystallographic analysis revealed that Thr369 phosphorylation at the DAPK2 C terminus creates a high-affinity canonical mode III 14-3-3-binding motif, further enhanced by the diterpene glycoside Fusicoccin A. Moreover, concentration-dependent DAPK2 dimerization is disrupted by Ca2+/CaM binding and stabilized by 14-3-3 binding in solution, thereby protecting the DAPK2 inhibitory autophosphorylation site Ser318 against dephosphorylation and preventing Ca2+/CaM binding. Overall, our findings provide mechanistic insights into 14-3-3-mediated DAPK2 inhibition and highlight the potential of the DAPK2:14-3-3 complex as a target for anti‐inflammatory therapies.


2021 ◽  
Vol 8 ◽  
Author(s):  
Yue Chen ◽  
Xiang Wei ◽  
Zihao Zhang ◽  
Yi He ◽  
Bo Huo ◽  
...  

Filamins (FLNs) are actin cross-linking proteins, and as scaffolding proteins, FLNs are closely associated with the stabilization of the cytoskeleton. Nevertheless, the biological importance of FLNs in aortic dissection (AD) has not been well-elucidated. In this study, we first reanalyzed datasets downloaded from the Gene Expression Omnibus (GEO) database, and we found that in addition to the extracellular matrix, the actin cytoskeleton is a key structure associated with AD. Given that FLNs are involved in remodeling the cytoskeleton to affect cellular functions, we measured their expression levels in the aortas of patients with Stanford type A AD (TAAD). Our results showed that the mRNA and protein levels of FLNA were consistently decreased in dissected aortas of both humans and mice, while the FLNB protein level was upregulated despite decreased FLNB mRNA levels, and comparable expression levels of FLNC were observed between groups. Furthermore, the immunohistochemistry results demonstrated that FLNA was highly expressed in smooth muscle cells (SMCs) of aorta in non-AD samples, and downregulated in the medial layer of the dissected aortas of humans and mice. Moreover, we revealed that FOS and JUN, forming a dimeric transcription factor called AP-1 (activating protein-1), were positively correlated with the expression of FLNA in aorta. Either overexpression of FOS or JUN alone, or overexpression of FOS and JUN together, facilitated the expression of FLNA in primary cultured human aortic SMCs. In the present study, we not only detected the expression pattern of FLNs in aortas of humans and mice with or without AD, but we also found that the expression of FLNA in the AD samples was significantly reduced and that AP-1 might regulate the expression of FLNA. Our findings will contribute to the elucidation of the pathological mechanisms of AD and provide potential therapeutic targets for AD.


Cancers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 3940
Author(s):  
Tao Wei ◽  
Paul F. Lambert

Scaffolding proteins can play important roles in cell signaling transduction. IQ motif-containing GTPase-activating protein 1 (IQGAP1) influences many cellular activities by scaffolding multiple key signaling pathways, including ones involved in carcinogenesis. Two decades of studies provide evidence that IQGAP1 plays an essential role in promoting cancer development. IQGAP1 is overexpressed in many types of cancer, and its overexpression in cancer is associated with lower survival of the cancer patient. Here, we provide a comprehensive review of the literature regarding the oncogenic roles of IQGAP1. We start by describing the major cancer-related signaling pathways scaffolded by IQGAP1 and their associated cellular activities. We then describe clinical and molecular evidence for the contribution of IQGAP1 in different types of cancers. In the end, we review recent evidence implicating IQGAP1 in tumor-related immune responses. Given the critical role of IQGAP1 in carcinoma development, anti-tumor therapies targeting IQGAP1 or its associated signaling pathways could be beneficial for patients with many types of cancer.


Sign in / Sign up

Export Citation Format

Share Document