scholarly journals On the Recognition Performance of BioHash-Protected Finger Vein Templates

Author(s):  
Vedrana Krivokuća ◽  
Sébastien Marcel
2018 ◽  
Vol 1 (2) ◽  
pp. 34-44
Author(s):  
Faris E Mohammed ◽  
Dr. Eman M ALdaidamony ◽  
Prof. A. M Raid

Individual identification process is a very significant process that resides a large portion of day by day usages. Identification process is appropriate in work place, private zones, banks …etc. Individuals are rich subject having many characteristics that can be used for recognition purpose such as finger vein, iris, face …etc. Finger vein and iris key-points are considered as one of the most talented biometric authentication techniques for its security and convenience. SIFT is new and talented technique for pattern recognition. However, some shortages exist in many related techniques, such as difficulty of feature loss, feature key extraction, and noise point introduction. In this manuscript a new technique named SIFT-based iris and SIFT-based finger vein identification with normalization and enhancement is proposed for achieving better performance. In evaluation with other SIFT-based iris or SIFT-based finger vein recognition algorithms, the suggested technique can overcome the difficulties of tremendous key-point extraction and exclude the noise points without feature loss. Experimental results demonstrate that the normalization and improvement steps are critical for SIFT-based recognition for iris and finger vein , and the proposed technique can accomplish satisfactory recognition performance. Keywords: SIFT, Iris Recognition, Finger Vein identification and Biometric Systems.   © 2018 JASET, International Scholars and Researchers Association    


Sensors ◽  
2020 ◽  
Vol 20 (19) ◽  
pp. 5523 ◽  
Author(s):  
Nada Alay ◽  
Heyam H. Al-Baity

With the increasing demand for information security and security regulations all over the world, biometric recognition technology has been widely used in our everyday life. In this regard, multimodal biometrics technology has gained interest and became popular due to its ability to overcome a number of significant limitations of unimodal biometric systems. In this paper, a new multimodal biometric human identification system is proposed, which is based on a deep learning algorithm for recognizing humans using biometric modalities of iris, face, and finger vein. The structure of the system is based on convolutional neural networks (CNNs) which extract features and classify images by softmax classifier. To develop the system, three CNN models were combined; one for iris, one for face, and one for finger vein. In order to build the CNN model, the famous pertained model VGG-16 was used, the Adam optimization method was applied and categorical cross-entropy was used as a loss function. Some techniques to avoid overfitting were applied, such as image augmentation and dropout techniques. For fusing the CNN models, different fusion approaches were employed to explore the influence of fusion approaches on recognition performance, therefore, feature and score level fusion approaches were applied. The performance of the proposed system was empirically evaluated by conducting several experiments on the SDUMLA-HMT dataset, which is a multimodal biometrics dataset. The obtained results demonstrated that using three biometric traits in biometric identification systems obtained better results than using two or one biometric traits. The results also showed that our approach comfortably outperformed other state-of-the-art methods by achieving an accuracy of 99.39%, with a feature level fusion approach and an accuracy of 100% with different methods of score level fusion.


2014 ◽  
Vol 1030-1032 ◽  
pp. 2382-2385 ◽  
Author(s):  
Lin Lin Fan ◽  
Hui Ma ◽  
Ke Jun Wang ◽  
Yong Liang Shen ◽  
Ying Shi ◽  
...  

Finger vein recognition refers to a recent biometric technique which exploits the vein patterns in the human finger to identify individuals. Finger vein recognition faces a number of challenges. One critical issue is the performance of finger vein recognition system. To overcome this problem, a finger vein recognition algorithm based on one kind of subspace projection technology is presented. Firstly, we use Kapur entropy threshold method to achieve the purpose of intercepting region of finger under contactless mode. Then the finger vein features were extracted by 2DPCA method. Finally, we used of nearest neighbor distance classifier for matching. The results indicate that the algorithm has good recognition performance.


Author(s):  
Lizhen Zhou ◽  
Gongping Yang ◽  
Yilong Yin ◽  
Lu Yang ◽  
Kuikui Wang

Finger vein pattern, as a promising hand-based biometric technology, has been well studied in recent years. In this paper, a new superpixel-based finger vein recognition method is presented. In the proposed method, we develop two types of effective superpixels, i.e. stable superpixel and discriminative superpixel to represent finger vein image and these superpixels are expected to play different roles in matching stage. In detail, the stable and discriminative superpixels are firstly learned from the training images for each enrolled class. When verifying a testing image, we just compare the superpixels at the same location as the two types of superpixels in template. Then, the two types of superpixels are combined utilizing a reversible weight-based fusion method in score level. Additionally, to further improve the recognition performance, we explore the superpixel context feature (SPCF). For each superpixel the SPCF is obtained by comparing the current superpixel with its surrounding neighbors. In the final matching stage, we integrate the matching score of two types of superpixels and it of the SPCF using the weighted SUM fusion method. The experimental results on two open finger vein databases, i.e. PolyU and SDUMLA-FV, show that our method not only performs better than the existing superpixel-based method, but also has advantages in comparison with some traditional ones.


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4635
Author(s):  
Jiho Choi ◽  
Jin-Seong Hong ◽  
Muhammad Owais ◽  
Seung-Gu Kim ◽  
Kang-Ryoung Park

Among many available biometrics identification methods, finger-vein recognition has an advantage that is difficult to counterfeit, as finger veins are located under the skin, and high user convenience as a non-invasive image capturing device is used for recognition. However, blurring can occur when acquiring finger-vein images, and such blur can be mainly categorized into three types. First, skin scattering blur due to light scattering in the skin layer; second, optical blur occurs due to lens focus mismatching; and third, motion blur exists due to finger movements. Blurred images generated in these kinds of blur can significantly reduce finger-vein recognition performance. Therefore, restoration of blurred finger-vein images is necessary. Most of the previous studies have addressed the restoration method of skin scattering blurred images and some of the studies have addressed the restoration method of optically blurred images. However, there has been no research on restoration methods of motion blurred finger-vein images that can occur in actual environments. To address this problem, this study proposes a new method for improving the finger-vein recognition performance by restoring motion blurred finger-vein images using a modified deblur generative adversarial network (modified DeblurGAN). Based on an experiment conducted using two open databases, the Shandong University homologous multi-modal traits (SDUMLA-HMT) finger-vein database and Hong Kong Polytechnic University finger-image database version 1, the proposed method demonstrates outstanding performance that is better than those obtained using state-of-the-art methods.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Zhiyong Tao ◽  
Xinru Zhou ◽  
Zhixue Xu ◽  
Sen Lin ◽  
Yalei Hu ◽  
...  

Accuracy and efficiency are essential topics in the current biometric feature recognition and security research. This paper proposes a deep neural network using bidirectional feature extraction and transfer learning to improve finger-vein recognition performance. Above all, we make a new finger-vein database with the opposite position information of the original one and adopt transfer learning to make the network suitable for our overall recognition framework. Next, the feature extractor is constructed by adjusting the unidirectional database’s parameters, capturing vein features from top to bottom and vice versa. Correspondingly, we concatenate the above two features to form the finger-veins’ bidirectional features, which are trained and classified by Support Vector Machines (SVM) to realize recognition. Experiments are conducted on the Malaysian Polytechnic University’s published database (FV-USM) and finger veins of Signal and Information Processing Laboratory (FV-SIPL). The accuracy of our proposed algorithm reaches 99.67% and 99.31%, which is significantly higher than the unidirectional recognition under each database. Compared with the algorithms cited in this paper, our proposed model based on bidirectional feature enjoys higher accuracy, faster recognition speed than the state-of-the-art frameworks, and excellent practical value.


Mathematics ◽  
2021 ◽  
Vol 9 (20) ◽  
pp. 2613
Author(s):  
Jin Seong Hong ◽  
Jiho Choi ◽  
Seung Gu Kim ◽  
Muhammad Owais ◽  
Kang Ryoung Park

When images are acquired for finger-vein recognition, images with nonuniformity of illumination are often acquired due to varying thickness of fingers or nonuniformity of illumination intensity elements. Accordingly, the recognition performance is significantly reduced as the features being recognized are deformed. To address this issue, previous studies have used image preprocessing methods, such as grayscale normalization or score-level fusion methods for multiple recognition models, which may improve performance in images with a low degree of nonuniformity of illumination. However, the performance cannot be improved drastically when certain parts of images are saturated due to a severe degree of nonuniformity of illumination. To overcome these drawbacks, this study newly proposes a generative adversarial network for the illumination normalization of finger-vein images (INF-GAN). In the INF-GAN, a one-channel image containing texture information is generated through a residual image generation block, and finger-vein texture information deformed by the severe nonuniformity of illumination is restored, thus improving the recognition performance. The proposed method using the INF-GAN exhibited a better performance compared with state-of-the-art methods when the experiment was conducted using two open databases, the Hong Kong Polytechnic University finger-image database version 1, and the Shandong University homologous multimodal traits finger-vein database.


Symmetry ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 709
Author(s):  
Ge-Liang Lv ◽  
Lei Shen ◽  
Yu-Dong Yao ◽  
Hua-Xia Wang ◽  
Guo-Dong Zhao

Due to its portability, convenience, and low cost, incompletely closed near-infrared (ICNIR) imaging equipment (mixed light reflection imaging) is used for ultra thin sensor modules and have good application prospects. However, equipment with incompletely closed structure also brings some problems. Some finger vein images are not clear and there are sparse or even missing veins, which results in poor recognition performance. For these poor quality ICNIR images, however, there is additional fingerprint information in the image. The analysis of ICNIR images reveals that the fingerprint and finger vein in a single ICNIR image can be enhanced and separated. We propose a feature-level fusion recognition algorithm using a single ICNIR finger image. Firstly, we propose contrast limited adaptive histogram equalization (CLAHE) and grayscale normalization to enhance fingerprint and finger vein texture, respectively. Then we propose an adaptive radius local binary pattern (ADLBP) feature combined with uniform pattern to extract the features of fingerprint and finger vein. It solves the problem that traditional local binary pattern (LBP) is unable to describe the texture features of different sizes in ICNIR images. Finally, we fuse the feature vectors of ADLBP block histogram for a fingerprint and finger vein, and realize feature-layer fusion recognition by a threshold decision support vector machine (T-SVM). The experimentation results showed that the performance of the proposed algorithm was noticeably better than that of the single model recognition algorithm.


Author(s):  
Dipti Verma ◽  
Sipi Dubey

Nowadays, conventional security method of using passwords can be easily forged by unauthorized person. Hence, biometric cues such as fingerprints, voice, palm print, and face are more preferable for recognition but to preserve the liveliness, another one important biometric trait is vein pattern, which is formed by the subcutaneous blood vessels that contain all the achievable recognition properties. Accordingly, in this paper, we propose a multibiometric system using palm vein, hand vein, and finger vein. Here, Holoentropy-based thresholding mechanism is newly developed for extracting the vein patterns. Also, Fuzzy Brain Storm Optimization (FBSO) method is proposed for score level fusion to achieve the better recognition performance. These two contributions are effectively included in the biometric recognition system and the performance analysis of the proposed method is carried out using the benchmark datasets of palm vein image, finger vein image, and hand vein image. The quantitative results are analyzed with the help of FAR, FRR, and accuracy. From outcome, we proved that the proposed FBSO approach attained a higher accuracy of 81.3% than the existing methods.


Sign in / Sign up

Export Citation Format

Share Document