optical blur
Recently Published Documents


TOTAL DOCUMENTS

55
(FIVE YEARS 15)

H-INDEX

11
(FIVE YEARS 2)

2021 ◽  
pp. 174702182110502
Author(s):  
Azuwan Musa ◽  
Alison R Lane ◽  
Amanda Ellison

Visual search is a task often used in the rehabilitation of patients with cortical and non-cortical visual pathologies such as visual field loss. Reduced visual acuity is often comorbid with these disorders, and it remains poorly defined how low visual acuity may affect a patient’s ability to recover visual function through visual search training. The two experiments reported here investigated whether induced blurring of vision (from 6/15 to 6/60) in a neurotypical population differentially affected various types of feature search tasks, whether there is a minimal acceptable level of visual acuity required for normal search performance, and whether these factors affected the degree to which participants could improve with training. From the results, it can be seen that reducing visual acuity did reduce search speed, but only for tasks where the target was defined by shape or size (not colour), and only when acuity was worse than 6/15. Furthermore, searching behaviour was seen to improve with training in all three feature search tasks, irrespective of the degree of blurring that was induced. The improvement also generalised to a non-trained search task, indicating that an enhanced search strategy had been developed. These findings have important implications for the use of visual search as a rehabilitation aid for partial visual loss, indicating that individuals with even severe comorbid blurring should still be able to benefit from such training.


Mathematics ◽  
2021 ◽  
Vol 9 (20) ◽  
pp. 2535
Author(s):  
Na Rae Baek ◽  
Se Woon Cho ◽  
Ja Hyung Koo ◽  
Kang Ryoung Park

Gender recognition of pedestrians in uncontrolled outdoor environments, such as intelligent surveillance scenarios, involves various problems in terms of performance degradation. Most previous studies on gender recognition examined recognition methods involving faces, full body images, or gaits. However, the recognition performance is degraded in uncontrolled outdoor environments due to various factors, including motion and optical blur, low image resolution, occlusion, pose variation, and changes in lighting. In previous studies, a visible-light image in which image restoration was performed and infrared-light (IR) image, which is robust to the type of clothes, accessories, and lighting changes, were combined to improve recognition performance. However, a near-IR (NIR) image requires a separate NIR camera and NIR illuminator, because of which challenges are faced in providing uniform illumination to the object depending on the distance to the object. A thermal camera, which is also called far-IR (FIR), is not widely used in a surveillance camera environment because of expensive equipment. Therefore, this study proposes an attention-guided GAN for synthesizing infrared image (SI-AGAN) for style transfer of visible-light image to IR image. Gender recognition performance was improved by using only a visible-light camera without an additional IR camera by combining the synthesized IR image obtained by the proposed method with the visible-light image. In the experiments conducted using open databases—RegDB database and SYSU-MM01 database—the equal error rate (EER) of gender recognition of the proposed method in each database was 9.05 and 12.95%, which is higher than that of state-of-the-art methods.


2021 ◽  
Vol 15 ◽  
Author(s):  
Yijing Zhuang ◽  
Li Gu ◽  
Jingchang Chen ◽  
Zixuan Xu ◽  
Lily Y. L. Chan ◽  
...  

Contrast sensitivity (CS) is important when assessing functional vision. However, current techniques for assessing CS are not suitable for young children or non-verbal individuals because they require reliable, subjective perceptual reports. This study explored the feasibility of applying eye tracking technology to quantify CS as a first step toward developing a testing paradigm that will not rely on observers’ behavioral or language abilities. Using a within-subject design, 27 healthy young adults completed CS measures for three spatial frequencies with best-corrected vision and lens-induced optical blur. Monocular CS was estimated using a five-alternative, forced-choice grating detection task. Thresholds were measured using eye movement responses and conventional key-press responses. CS measured using eye movements compared well with results obtained using key-press responses [Pearson’s rbest–corrected = 0.966, P < 0.001]. Good test–retest variability was evident for the eye-movement-based measures (Pearson’s r = 0.916, P < 0.001) with a coefficient of repeatability of 0.377 log CS across different days. This study provides a proof of concept that eye tracking can be used to automatically record eye gaze positions and accurately quantify human spatial vision. Future work will update this paradigm by incorporating the preferential looking technique into the eye tracking methods, optimizing the CS sampling algorithm and adapting the methodology to broaden its use on infants and non-verbal individuals.


2021 ◽  
Vol 62 (10) ◽  
pp. 1
Author(s):  
Athanasios Panorgias ◽  
Stephanie Aigbe ◽  
Emily Jeong ◽  
Carles Otero ◽  
Peter J. Bex ◽  
...  
Keyword(s):  

Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4635
Author(s):  
Jiho Choi ◽  
Jin-Seong Hong ◽  
Muhammad Owais ◽  
Seung-Gu Kim ◽  
Kang-Ryoung Park

Among many available biometrics identification methods, finger-vein recognition has an advantage that is difficult to counterfeit, as finger veins are located under the skin, and high user convenience as a non-invasive image capturing device is used for recognition. However, blurring can occur when acquiring finger-vein images, and such blur can be mainly categorized into three types. First, skin scattering blur due to light scattering in the skin layer; second, optical blur occurs due to lens focus mismatching; and third, motion blur exists due to finger movements. Blurred images generated in these kinds of blur can significantly reduce finger-vein recognition performance. Therefore, restoration of blurred finger-vein images is necessary. Most of the previous studies have addressed the restoration method of skin scattering blurred images and some of the studies have addressed the restoration method of optically blurred images. However, there has been no research on restoration methods of motion blurred finger-vein images that can occur in actual environments. To address this problem, this study proposes a new method for improving the finger-vein recognition performance by restoring motion blurred finger-vein images using a modified deblur generative adversarial network (modified DeblurGAN). Based on an experiment conducted using two open databases, the Shandong University homologous multi-modal traits (SDUMLA-HMT) finger-vein database and Hong Kong Polytechnic University finger-image database version 1, the proposed method demonstrates outstanding performance that is better than those obtained using state-of-the-art methods.


Mathematics ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 1907
Author(s):  
Hyung-Il Kim ◽  
Seok Bong Yoo

Images captured by cameras in closed-circuit televisions and black boxes in cities have low or poor quality owing to lens distortion and optical blur. Moreover, actual images acquired through imaging sensors of cameras such as charge-coupled devices and complementary metal-oxide-semiconductors generally include noise with spatial-variant characteristics that follow Poisson distributions. If compression is directly applied to an image with such spatial-variant sensor noises at the transmitting end, complex and difficult noises called compressed Poisson noises occur at the receiving end. The super-high-definition imaging technology based on deep neural networks improves the image resolution as well as effectively removes the undesired compressed Poisson noises that may occur during real image acquisition and compression as well as in transmission and reception systems. This solution of using deep neural networks at the receiving end to solve the image degradation problem can be used in the intelligent image analysis platform that performs accurate image processing and analysis using high-definition images obtained from various camera sources such as closed-circuit televisions and black boxes. In this review article, we investigate the current state-of-the-art super-high-definition imaging techniques in terms of image denoising for removing the compressed Poisson noises as well as super-resolution based on the deep neural networks.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Victor Rodriguez-Lopez ◽  
Carlos Dorronsoro ◽  
Johannes Burge

Abstract Interocular differences in image blur can cause processing speed differences that lead to dramatic misperceptions of the distance and three-dimensional direction of moving objects. This recently discovered illusion—the reverse Pulfrich effect—is caused by optical conditions induced by monovision, a common correction for presbyopia. Fortunately, anti-Pulfrich monovision corrections, which darken the blurring lens, can eliminate the illusion for many viewing conditions. However, the reverse Pulfrich effect and the efficacy of anti-Pulfrich corrections have been demonstrated only with trial lenses. This situation should be addressed, for clinical and scientific reasons. First, it is important to replicate these effects with contact lenses, the most common method for delivering monovision. Second, trial lenses of different powers, unlike contacts, can cause large magnification differences between the eyes. To confidently attribute the reverse Pulfrich effect to interocular optical blur differences, and to ensure that previously reported effect sizes are reliable, one must control for magnification. Here, in a within-observer study with five separate experiments, we demonstrate that (1) contact lenses and trial lenses induce indistinguishable reverse Pulfrich effects, (2) anti-Pulfrich corrections are equally effective when induced by contact and trial lenses, and (3) magnification differences do not cause or impact the Pulfrich effect.


Author(s):  
T. Sieberth

Abstract. Photogrammetric processes such as camera calibration, feature and target detection and referencing are assumed to strongly depend on the quality of the images that are provided for the process. Consequently, motion and optically blurred images are usually excluded from photogrammetric processes to supress their negative influence. To evaluate how much optical blur is acceptable and how large the influence of optical blur is on photogrammetric procedures a variety of test environments were established. These were based upon previous motion blur research and included test fields for the analysis of camera calibration. For the evaluation, a DSLR camera as well as Lytro Illum light field camera were used. The results show that optical blur has a negative influence on photogrammetric procedures, mostly automatic target detection. With the intervention of an experienced operator and the use of semi-automatic tools, acceptable results can be established.


Sign in / Sign up

Export Citation Format

Share Document