Shear Layer and Shedding Modes Excitations of a Backward-Facing Step Flow by Surface Plasma Discharge

Author(s):  
Nicolas Benard ◽  
P. Sujar-Garrido ◽  
Jean-Paul Bonnet ◽  
E. Moreau
Author(s):  
Koichi Yamagata ◽  
Manabu Saito ◽  
Tadashi Morioka ◽  
Shinji Honami

In this paper, the flow behavior of a reattachment process over a backward facing step flow is reported. The reattachment process is controlled by injection of vortex generator jets. The injection of jets upstream of the step produces the co-rotating longitudinal vortices in a separating shear layer. The experiment of the step response of the injection jet is also conducted in order to investigate the evolution process of the longitudinal vortices. A large scale of primary and counter vortices are observed, when the velocity ratio of the free stream to injected jet is 6. The detailed structure of the longitudinal vortices is clarified. The remarkable effect of the vortices on the separating shear layer downstream of the step is observed.


Water ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2629
Author(s):  
Fangfang Wang ◽  
Ang Gao ◽  
Shiqiang Wu ◽  
Senlin Zhu ◽  
Jiangyu Dai ◽  
...  

Coherent vortex structures (CVS) are discovered for more than half a century, and they are believed to play a significant role in turbulence especially for separated flows. An experimental study is conducted for a pressured backward-facing step flow with Reynolds number (Reh) being 4400 and 9000. A synchronized particle image velocimetry (PIV) system is developed for measurement of a wider range of velocity fields with high resolution. The CVS are proved to exist in the separation-reattachment process. For their temporal evolution, a life cycle is proposed that vortices form in the free shear layer, develop with pairings and divisions and finally shed at the reattachment zone, and sometimes new vortical structures are restructured with recovery of flow pattern. The CVS favor the free shear layer with frequent pairings and divisions particularly at the developing stage around x/h = 2~5 (x: distance from the step in flow direction, h: step height), which may contribute to the high turbulent intensity and shear stress there. A critical distance is believed to exist among CVS, which affects their amalgamation (pairing) and division events. Statistics show that the CVS are well organized in spatial distribution and show specific local features with the flow structures distinguished. The streamwise and vertical diameters (Dx and Dy) and width to height ratio (Dx/Dy) all obey to the lognormal distribution. With increase of Reh from 4400 to 9000, Dx decreases and Dy increases, but the mean diameter (D=0.5 × (Dx + Dy)) keeps around (0.28~0.29) h. As the increase of Reh, the vortical shape change toward a uniform condition, which may be contributed by enhancement of the shear intensity.


2014 ◽  
Vol 136 (12) ◽  
Author(s):  
Juan D'Adamo ◽  
Roberto Sosa ◽  
Guillermo Artana

Active control over a backward facing step flow is studied experimentally by means of plasma based devices. The Reynolds number based on the step height h is 1520. An electrohydrodynamic actuator (EHD), dielectric barrier discharge (DBD) type, is flush mounted to the step wall. The DBD configuration adds momentum locally, normal to the separated shear layer, thus producing strong modifications downstream. The actuation is periodic and its frequency and amplitude are scrutinized to characterize the flow behavior under forcing. Measures of velocity fields for these flows are obtained from particle image velocimetry (PIV). As reported by previous works, the reattachment length shows an important reduction for an optimum forcing frequency. This value closely matches the shear layer flow natural frequency. On the other hand, the flow is less sensitive to the forcing amplitude though the analysis allows us to optimize the actuation in order to save power consumption.


1992 ◽  
Vol 238 ◽  
pp. 73-96 ◽  
Author(s):  
M. A. Z. Hasan

The flow over a backward-facing step with laminar separation was investigated experimentally under controlled perturbation for a Reynolds number of 11000, based on a step height h and a free-stream velocity UO. The reattaching shear layer was found to have two distinct modes of instability: the ‘shear layer mode’ of instability at Stθ ≈ 0.012 (Stθ ≡ fθ/UO, θ being the momentum thickness at separation and f the natural roll-up frequency of the shear layer); and the ‘step mode’ of instability at Sth ≈ 0.185 (Sth ≡ fh/U0). The shear layer instability frequency reduced to the step mode one via one or more stages of a vortex merging process. The perturbation increased the shear layer growth rate and the turbulence intensity and decreased the reattachment length compared to the unperturbed flow. Cross-stream measurements of the amplitudes of the perturbed frequency and its harmonics suggested the splitting of the shear layer. Flow visualization confirmed the shear layer splitting and showed the existence of a low-frequency flapping of the shear layer.


Sign in / Sign up

Export Citation Format

Share Document